TREATMENT WETLANDS
SECOND EDITION
Contents

Part I

Technical Underpinnings ... 1

Chapter 1

Introduction to Treatment Wetlands .. 3

1.1 Wetland Characteristics .. 3

1.2 Types of Treatment Wetlands .. 5

FWS Wetlands ... 5

HSSF Wetlands .. 6

VF Wetlands .. 6

1.3 Wetlands as a Treatment Technology .. 8

Municipal Wastewater Treatment ... 8

Domestic Wastewater Treatment .. 10

Animal Wastewater Treatment ... 10

Minewater Treatment .. 10

Industrial Wastewater Treatment .. 10

Leachate and Remediation .. 10

Urban Stormwater Treatment .. 11

Field Runoff Treatment ... 11

1.4 Historical Perspective .. 11

Development of Treatment Wetlands in North America ... 13

Treatment Wetlands in Europe ... 15

Treatment Wetlands in Australia, New Zealand, Africa, Asia, and South America .. 18

Summary .. 19

Chapter 2

Hydrology and Hydraulics ... 21

2.1 Wetland Hydrology .. 21

Hydrologic Nomenclature ... 21

Mean Water Depth ... 22

Wetland Water Volume and Nominal Detention Time ... 22

Overall Water Mass Balances ... 26

Inflows and Outflows ... 26

Combined Effects: The Wetland Water Budget .. 33

2.2 FWS Wetland Hydraulics ... 34

The Calculation Structure .. 34

Friction Equations for FWS Wetland Flows .. 36

Wetland Data ... 39

2.3 HSSF Wetland Hydraulics .. 42

Flow in Porous Media .. 42

Adaptations for HSSF Wetlands .. 42

Correlations for Hydraulic Conductivity of Clean Bed Porous Media .. 44

Clogging of HSSF Bed Media ... 44

HSSF Water Elevation Profiles .. 49

Flooded Operation ... 50

Flow Stratification ... 51

2.4 VF Wetland Hydraulics ... 52

Intermittent Downflow Beds .. 53

Vertical Flow Tracer Tests ... 55

Clogging .. 56

Summary .. 57
Chapter 5 Air, Water, and Soil Chemical Interactions... 133

5.1 Fundamentals of Transfer .. 133

5.2 Oxygen Dynamics in Treatment Wetlands .. 134
 Biochemical Production of Oxygen ... 135
 Physical Oxygen Transfers ... 135
 Plant Oxygen Transfer .. 137
 Biological and Chemical Oxygen Consumption .. 138
 Wetland Profiles .. 139
 Trends and Variability .. 143

5.3 Volatilization .. 144
 Nitrous Oxide .. 144
 Methane .. 146
 Carbon Dioxide ... 147
 Greenhouse Effects ... 148

5.4 Oxidation-Reduction Potential .. 149
 Redox Potentials in Treatment Wetlands ... 151

5.5 Wetland Hydrogen Ion Concentrations .. 151
 Surface Flow Wetlands .. 151
 Subsurface Flow Wetlands ... 153
 Wetlands Treating Acid Mine Drainage ... 157
 Substrate Effects .. 158

5.6 Alkalinity and Acidity .. 159
 Alkalinity in Treatment Wetlands .. 159
 Carbonates in Treatment Wetlands ... 159

Summary ... 161

Chapter 6 Representing Treatment Performance .. 163

6.1 Variability in Treatment Wetlands ... 163
 Intrasytem Variability .. 163
 Data Folding ... 163
 Intersystem Variability .. 164
 Replication ... 165
 Side-by-Side Studies .. 165
 Aggregated Data Sets ... 165

6.2 Graphical Representations of Treatment Performance ... 166
 Outputs Versus Inputs .. 166
 Perspectives Derived from the Loading Graph ... 167
 Pitfalls of Graphical Representations ... 168

6.3 Mass Balances .. 169
 Concentrations ... 169
 Chemical Terminology .. 170
 Chemical Mass Balances ... 170

6.4 Processes that Contribute to Pollutant Removals ... 172
 Microbially Mediated Processes .. 172
 Chemical Networks ... 174
 Volatilization .. 174
 Sedimentation .. 174
 Sorption .. 174
 Photodegradation .. 174
 Plant Uptake ... 175
Chapter 7 Suspended Solids .. 203

7.1 Solids Measurement .. 203
 Potential for Sampling Errors ... 203
 Solids Characterization ... 205

7.2 Particulate Processes in FWS Wetlands .. 206
 Particulate Settling ... 206
 “Filtration” versus Interception .. 209
 Resuspension ... 210
 Chemical Precipitates .. 211
 Biological Sediment Generation ... 213
 Accretion .. 213

7.3 TSS Removal in FWS Wetlands .. 216
 Internal Cycling: Mass Balances .. 216
 The w-C Model .. 216
 Internal Cycling ... 217
 Seasonal and Stochastic Effects ... 218
 Input–Output Relations ... 220
 Open Water Areas ... 223
 Pond–Wetland Combinations .. 223
 Submerged Aquatic Vegetation (SAV) ... 226

7.4 Particulate Processes in HSSF Wetlands ... 226
 Particulate Settling ... 226
 Filtration and Interception .. 227
 Resuspension ... 227
 Chemical Precipitation ... 227
 Production of Biological Solids .. 227
 Accretion and Bed Clogging .. 228

7.5 TSS Removal in HSSF Wetlands .. 228
 Seasonal and Stochastic Effects .. 229
 Input–Output Relations ... 230
Chapter 8 Carbon and Biochemical Oxygen Demand ... 237
8.1 Wetland Carbon Speciation and Processing .. 237
 BOD, COD, and TOC ... 237
 Wetland Chemistry of Carbon ... 238
 Organic Carbon ... 239
 Carbon Processing in Wetland Necromass and Soils .. 240
8.2 BOD Removal in FWS Wetlands ... 241
 Annual Input–Output Concentration Relations .. 242
 First-Order Modeling ... 242
 Model Curves .. 244
 Variability in Annual Performances ... 246
 Effects of Design and Operating Conditions .. 247
 Seasonal Trends ... 249
8.3 BOD Removal in HSSF Wetlands ... 253
 First-Order Modeling ... 255
 Graphical Relations ... 257
 Temperature Effects .. 258
 Oxygen Supply .. 258
 Seasonal Trends ... 260
 Effects of Design and Operating Conditions .. 260
8.4 BOD Removal in VF Wetlands ... 264
 Graphical Relationships .. 264
 First-Order Modeling ... 265
 Seasonal Effects ... 266
Summary ... 266

Chapter 9 Nitrogen ... 267
9.1 Nitrogen Forms in Wetland Waters ... 267
 Organic Nitrogen .. 267
 Ammonia .. 267
 Oxidized Nitrogen .. 268
9.2 Wetland Nitrogen Storages .. 268
 Soils and Sediments .. 268
 Biomass .. 270
9.3 Nitrogen Transformations in Wetlands .. 272
 Physical Processes ... 273
 Theoretical Considerations .. 276
 Microbial Processes ... 277
 Nitrification of Ammonia .. 279
 Denitrification .. 279
 Aerobic Denitrification ... 280
 Anaerobic Ammonia Oxidation (Anammox) ... 284
 Nitrogen Fixation ... 284
9.4 Vegetation Effects on Nitrogen Processing ... 285
 The Effects of Vegetation Growth and Cycling .. 286
 Accretion of Nitrogenous Residuals ... 288
 Short-Term Anomalies ... 288
 Harvest to Remove Nitrogen .. 289
 Soil and Sediment Effects on Nitrogen Processing ... 290
Chapter 10 Longitudinal Process of Wetland Treatment ... 393

10.1 Longitudinal Distribution of Total Phosphorus ... 393

10.2 Phosphorus Movement in Surface Flow Wetlands .. 395

10.3 Intrasystem Phosphorus Variability in SFW Wetlands ... 383

10.4 Longevity of Phosphorus Removal in SFW Wetlands .. 386

10.5 Propagation of Phosphorus through SFW Wetlands ... 388

10.6 Particulate Phosphorus Movement in SFW Wetlands ... 389

10.7 Intrasystem Phosphorus Variability in FWS Wetlands .. 383

10.8 Longevity of Phosphorus Removal in FWS Wetlands .. 386

10.9 Propagation of Phosphorus through FWS Wetlands ... 388

10.10 Particulate Phosphorus Movement in FWS Wetlands .. 389

10.11 Phosphorus Removal in Subsurface Flow Wetlands .. 399

10.12 Phosphorus Movement in Subsurface Flow Wetlands ... 395

Chapter 11 Halogens, Sulfur, Metals, and Metalloids .. 403

11.1 Halogens .. 403

11.2 Alkali Metals .. 408

11.3 Collective Parameters ... 410

11.4 Sulfur .. 413

11.5 Trace Metals: General Considerations .. 419

11.6 The Oxide Formers ... 426
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.7</td>
<td>Heavy Metals</td>
<td>438</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>438</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>444</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>447</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>Chromium</td>
<td>457</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>Mercury</td>
<td>466</td>
</tr>
<tr>
<td>11.8</td>
<td>Metalloids</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td>Selenium</td>
<td>475</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
<td>480</td>
</tr>
</tbody>
</table>

Chapter 12 Pathogens

12.1 Indicator Organisms and Measurement | 483

12.2 Pathogen Removal Processes

- Solar Disinfection | 485
- Predation | 486
- Settling and Filtration | 486
- Mortality and Regrowth | 487
- Reintroduction | 488

12.3 Fecal Coliform Removal in FWS Wetlands | 489

- First-Order Removal Models | 489
- Input–Output Relation for Fecal Coliforms | 494

12.4 Removal of Other Indicator Bacteria in FWS Wetlands | 496

- Total Coliforms | 496
- Fecal Streptococcus | 497
- Escherichia coli | 497
- Miscellaneous Bacteria | 497

12.5 Parasite and Virus Removal in FWS Wetlands | 497

- Parasites | 497
- Viruses | 497
- Wildlife Pathogens | 499

12.6 Fecal Coliform Removal in SSF Wetlands | 500

- Effect of Vegetation | 501
- Effect of Depth | 503
- Effect of Media Size and Uniformity | 503
- Background Concentrations | 505
- First-Order Removal Models | 506
- Rate Constants | 506
- Seasonal Trends | 507
- Temperature Coefficients | 507
- Variability | 508

12.7 Removal of Other Bacteria in SSF Wetlands | 508

- Total Coliforms | 508
- Miscellaneous Bacteria | 509

12.8 Parasite and Virus Removal in SSF Wetlands | 511

- Parasites | 511
- Viruses | 515

Summary | 515
Chapter 13 Organic Chemicals ... 517
 13.1 Petroleum Hydrocarbons .. 517
 BTEX .. 517
 Alkanes ... 520
 Polycyclic Aromatic Hydrocarbons ... 520
 13.2 Chlorinated Hydrocarbons .. 522
 Chlorinated Benzenes .. 522
 Chlorinated Ethenes .. 523
 13.3 Organic Chemicals .. 524
 Explosives ... 524
 De-icing Compounds .. 527
 Phenols .. 528
 Surfactants ... 530
 Miscellaneous Hydrocarbons ... 531
 13.4 Pesticides .. 531
 Atrazine ... 532
 13.5 Cyanide .. 535
Summary... 537

Chapter 14 Event-Driven Wetlands ... 539
 14.1 Source Characterization .. 539
 Incoming Flows .. 539
 Incoming Concentrations and Loads ... 541
 Hydrology of Pulsed and Seasonal Systems .. 543
 Flow and Capture .. 545
 14.2 Technology Status ... 547
 Urban Stormwater .. 547
 Agricultural Stormwater ... 549
 Industrial Stormwater .. 550
 Batch Systems ... 551
 Combined Sewer Overflow (CSO) .. 553
 14.3 TSS in Event-Driven Wetlands ... 553
 Dynamic Responses .. 554
 Intersystem Performance .. 554
 14.4 Phosphorus in Event-Driven Wetlands ... 555
 Flow Pulses .. 555
 Event Sequences .. 558
 Urban Stormwater .. 559
 Agricultural Runoff ... 560
 14.5 Nitrogen in Event-Driven Wetlands ... 560
 Nitrate Pulses .. 560
 Ammonia Pulses .. 562
 Nitrogen Reduction in Urban Stormwater ... 564
 Agricultural Runoff .. 564
 14.6 Metals in Event-Driven Wetlands .. 565
 14.7 Pesticides in Event-Driven Wetlands ... 568
 14.8 Dynamic Modeling .. 568
 The Dynamic Model for Stormwater Treatment Areas (DMSTA) .. 568
 Variability ... 570
Summary... 570
Part II
Implementation .. 571

Chapter 15 Evolution of Sizing Methods ... 573
15.1 Historical Perspectives ... 573
 First-Order Modeling ... 574
 Loading Specifications ... 575
 Regression Equations .. 576
15.2 Free Water Surface Wetlands .. 577
15.3 Stormwater Wetlands ... 577
15.4 Horizontal Subsurface Flow Wetlands ... 578
 The Root-Zone Method .. 578
 Evolution of HSSF Wetland Design in Europe ... 578
 Evolution of HSSF Wetland Design in North America .. 580
 Reflections on Old HSSF Design Procedures .. 582
15.5 Vertical Flow Wetlands ... 582
 Design of Vertical Flow Wetlands in Europe .. 582
 Loading Specifications .. 584
 Implied Oxygen Transfer .. 584
 Computer Models .. 585
15.6 Common Design Misunderstandings .. 585
 Area- and Volume-Based Rates ... 585
 Temperature Coefficients ... 586
 Excursion Containment and Safety Factors ... 586
15.7 A Critique of Design Methods .. 586
 Loading Specification ... 586
 Loading-Based FWS Sizing—An Example .. 587
 Loading-Based FWS Sizing—Difficulties ... 587
 Exponential Decline Models ... 588
15.8 A Performance-Based Sizing Algorithm .. 589
15.9 Guidelines and Manuals .. 589
 Obsolete Manuals ... 589
 Current Manuals ... 590
Summary .. 591

Chapter 16 Design Basis .. 593
16.1 Project Setting ... 593
 Space Considerations: Limited versus Unlimited Space ... 593
 Soils and Geology .. 594
 Groundwater ... 594
 Altitude .. 595
 Biological Conditions .. 596
16.2 Characterization of Domestic and Municipal Wastewater 596
 Water Quantity ... 597
 Small Domestic Systems ... 597
 Small Flows ... 597
 Patterns of Small Flows .. 597
 Actual Water Use .. 598
 Infiltration and Inflow .. 598
 Water Quality ... 599
16.3 Characterization of Other Wastewaters .. 602
 Industrial Wastewaters .. 602
 Landfill Leachates .. 602
 Pulp and Paper Wastewater ... 603
 Mine Drainage .. 603
Chapter 17 Sizing of FWS Wetlands

17.1 Pollutant Reductions and Performance Computations

 Water Budget ... 627

 Pollutant Mass Balances .. 628

 Interconnected Pollutants: The Case of Nitrogen 630

 Design Parameters: Sources of Information 630

 Design Sizing Goals: Load Reduction versus Concentration Reduction ... 632

17.2 Area Computations .. 633

 Goal Seeking: Determination of the Required Wetland Area .. 633

 Minimum Load Reduction Criterion 634

 Multiple Compounds of Concern 634

17.3 Checking the Biogeochemical Cycles 634

 C, N, and P Cycles ... 635

17.4 Chemical Supply Constraints .. 638

 Oxygen Supply .. 639

 Carbon Supply ... 639

 Intersystem Performance Checks 639

17.5 Adjustments for Seasonality .. 641

 Wetland Water Temperature ... 642

 Temperature Coefficients ... 643

 Rate-Constant Adjustment ... 643

 Monthly Rate Coefficients .. 643

 Trend Amplitudes .. 644

 Winter Storage versus Winter Operation 645
<table>
<thead>
<tr>
<th>Chapter 18</th>
<th>Implementation of FWS Wetlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>Physical Design</td>
</tr>
<tr>
<td></td>
<td>Siting</td>
</tr>
<tr>
<td></td>
<td>Other Regulatory Concerns</td>
</tr>
<tr>
<td></td>
<td>Cultural Resources</td>
</tr>
<tr>
<td></td>
<td>Layout and Configuration</td>
</tr>
<tr>
<td></td>
<td>Fitting the Wetlands to the Site</td>
</tr>
<tr>
<td>18.2</td>
<td>Hydraulics</td>
</tr>
<tr>
<td></td>
<td>Hydraulic Profiles</td>
</tr>
<tr>
<td>18.3</td>
<td>Earthmoving: Dikes, Berms, and Levees</td>
</tr>
<tr>
<td></td>
<td>Berm Design</td>
</tr>
<tr>
<td></td>
<td>Basin Bottom Contouring: Cut and Fill</td>
</tr>
<tr>
<td></td>
<td>Liners and Rooting Media</td>
</tr>
<tr>
<td></td>
<td>Erosion and Flood Protection</td>
</tr>
<tr>
<td>18.4</td>
<td>Water Control Structures</td>
</tr>
<tr>
<td></td>
<td>Controlling Inflow</td>
</tr>
<tr>
<td></td>
<td>Spreading the Water</td>
</tr>
<tr>
<td></td>
<td>Outlets</td>
</tr>
<tr>
<td></td>
<td>Water Collection</td>
</tr>
<tr>
<td></td>
<td>Level Control</td>
</tr>
<tr>
<td></td>
<td>Trash Racks</td>
</tr>
<tr>
<td></td>
<td>Emergency Overflows</td>
</tr>
<tr>
<td></td>
<td>Pumps</td>
</tr>
<tr>
<td>18.5</td>
<td>Stormwater Wetlands</td>
</tr>
<tr>
<td></td>
<td>Bathymetry</td>
</tr>
<tr>
<td></td>
<td>Control Structures</td>
</tr>
<tr>
<td></td>
<td>Supplemental Water Source</td>
</tr>
<tr>
<td>18.6</td>
<td>Wetland Construction</td>
</tr>
<tr>
<td></td>
<td>Site Preparation</td>
</tr>
<tr>
<td></td>
<td>Grading and Subgrade Preparation</td>
</tr>
<tr>
<td></td>
<td>Liner Placement</td>
</tr>
<tr>
<td></td>
<td>Rooting Soil Placement</td>
</tr>
<tr>
<td></td>
<td>Piping and Structures</td>
</tr>
<tr>
<td>18.7</td>
<td>Vegetation Establishment</td>
</tr>
<tr>
<td></td>
<td>Selection of Plants</td>
</tr>
<tr>
<td></td>
<td>Treatment Potential</td>
</tr>
<tr>
<td></td>
<td>Diversity</td>
</tr>
<tr>
<td></td>
<td>Plant Propagules and Sources</td>
</tr>
<tr>
<td></td>
<td>Planting Density</td>
</tr>
<tr>
<td></td>
<td>Plant</td>
</tr>
<tr>
<td></td>
<td>Plant Establishment</td>
</tr>
<tr>
<td>Summary</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 19</th>
<th>Ancillary Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>Vegetative Biodiversity</td>
</tr>
<tr>
<td></td>
<td>Wetland Plants</td>
</tr>
</tbody>
</table>

© 2009 by Taylor & Francis Group, LLC
Water Regime... 692
Propagation... 693
Biodiversity.. 693

19.2 Wildlife... 694
 Macroinvertebrates... 695
 Fish ... 696
 Amphibians and Reptiles.. 697
 Birds .. 697
 Mammals .. 699

19.3 Design and Wildlife Use .. 702
 Design to Encourage Wildlife .. 702
 Design to Discourage Incompatible Wildlife ... 703
 Ecological Risk Analysis ... 703

19.4 Human Use .. 704
 Consumptive Activities .. 704
 Passive Activities ... 705
 Conflicts ... 705

19.5 Design for Ancillary Benefits ... 706
 Siting ... 706
 Cell Size and Configuration .. 707
 Vegetation .. 707
 Pretreatment ... 708
 Human Access ... 708
 Examples ... 708

Summary ... 713

Chapter 20 Sizing of SSF Wetlands ... 715
20.1 Prescriptive Sizing Criteria ... 715
 Loading Charts ... 715
 Scaling Factors ... 717
 Empirical Equations ... 718

20.2 Performance-Based Wetland Sizing ... 718
 Basic Application of the P-k-C* Model to HSSF Wetlands 718
 Water Budget Effects ... 719
 Pollutant Mass Balances .. 720
 Interconnected Pollutants ... 721

20.3 Accomplishing Performance-Based Sizing for HSSF Wetlands 722
 Conservatism in Design .. 723
 Most Basic Case: Consideration of Concentration Reduction Only, No Change in Flow .. 724
 Second Case: Pollutant Reductions under Variable Flow .. 724
 Role of C* in Pollutant Reduction .. 724
 Seasonal and Stochastic Variability ... 726
 Cross-Checks against Existing Performance Data .. 727
 Biogeochemical Cycle Constraints ... 728

20.4 VF Wetlands (Intermittently Loaded Beds) .. 729
 Development .. 729
 Sizing ... 730
 Number of Beds ... 733

20.5 VF Wetland Sizing (Recirculating Filters) .. 733
20.6 Biosolids Wetlands for Sludge Dewatering ... 734
20.7 Secondary Considerations .. 734
 Seasonal Impacts of the Biomass Cycle .. 734
 Thermal Energy Balance Limitations .. 734

Summary ... 734
Chapter 21 Implementation of SSF Wetlands .. 735
21.1 Siting ... 735
 Construction Access .. 735
 Slopes ... 735
 Existing Utilities ... 736
 Floodplains .. 737
 Regulatory Issues ... 737
21.2 Layout and Configuration .. 738
 Number of Flow Paths .. 738
 Operational Flexibility .. 738
 Treatment Redundancy .. 739
 Loading and Resting .. 739
21.3 Number and Type of Wetlands in Each Flow Path 739
 Greater Treatment Efficiency ... 739
 Dividing Wetland Cells Based on Slope ... 740
 More Than One Wetland Type ... 740
 Staged Treatment ... 741
21.4 Clogging Dynamics .. 741
 Defining Failure in SSF Wetlands .. 741
 Clogging in HSSF Wetland Beds .. 742
 Clogging in VF Wetland Beds ... 744
21.5 Cell Configuration .. 744
 Length-to-Width Ratio ... 745
 Wetland Cell Depth .. 746
 Type and Size of Bed Media ... 747
 SSF Wetland Cell Size .. 748
21.6 SSF Wetland Hydraulics .. 748
 Hydraulics of VF and Biosolids Wetlands ... 753
21.7 Flow Distribution and Management .. 753
 HSSF Wetlands ... 753
 VF Wetlands ... 753
 Biosolids Wetlands .. 756
 Effluent Flow Collection ... 756
 Water Level Control ... 756
21.8 Liner Systems ... 757
 Thermal Considerations .. 757
21.9 SSF Wetland Construction .. 757
 Elevations and Grading .. 758
 Liners ... 758
 Berms ... 759
 Vertical Sidewalls .. 760
 Influent and Effluent Piping ... 762
 Bed Media Placement ... 762
 Installation of Control Structures .. 763
21.10 Commissioning and Start-Up ... 764
 Plant Selection ... 764
 Vegetation Establishment ... 764

Summary .. 766

Chapter 22 Management, Operations, and Maintenance 767
22.1 Start-Up .. 767
 Antecedent Conditions ... 767
 Vegetation Start-Up .. 769
<table>
<thead>
<tr>
<th>Chapter 22</th>
<th>Monitoring ...</th>
<th>770</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sampling and Analyses in Support of Mass Balances ...</td>
<td>771</td>
</tr>
<tr>
<td></td>
<td>Biological Monitoring ...</td>
<td>774</td>
</tr>
<tr>
<td></td>
<td>Monitoring Vegetation ...</td>
<td>774</td>
</tr>
<tr>
<td></td>
<td>Water Level and Flow Management ...</td>
<td>774</td>
</tr>
<tr>
<td></td>
<td>Flow Management ...</td>
<td>774</td>
</tr>
<tr>
<td></td>
<td>Depth Controllability ...</td>
<td>776</td>
</tr>
<tr>
<td></td>
<td>Water Depth, Plants, and Nutrient Loadings ...</td>
<td>777</td>
</tr>
<tr>
<td></td>
<td>Seasonal Depth Adjustments ...</td>
<td>778</td>
</tr>
<tr>
<td></td>
<td>Control of Nuisance Animals ...</td>
<td>778</td>
</tr>
<tr>
<td></td>
<td>Birds ..</td>
<td>778</td>
</tr>
<tr>
<td></td>
<td>Fish ..</td>
<td>779</td>
</tr>
<tr>
<td></td>
<td>Rodents ..</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>Insects ...</td>
<td>784</td>
</tr>
<tr>
<td></td>
<td>Vegetation Management ..</td>
<td>786</td>
</tr>
<tr>
<td></td>
<td>General System Care ..</td>
<td>786</td>
</tr>
<tr>
<td></td>
<td>Harvesting ...</td>
<td>786</td>
</tr>
<tr>
<td></td>
<td>Weeds ..</td>
<td>786</td>
</tr>
<tr>
<td></td>
<td>Burning ..</td>
<td>787</td>
</tr>
<tr>
<td></td>
<td>Maintenance of Structures ..</td>
<td>788</td>
</tr>
<tr>
<td></td>
<td>Long-Term Prospects ..</td>
<td>788</td>
</tr>
<tr>
<td></td>
<td>FWS Wetlands ...</td>
<td>788</td>
</tr>
<tr>
<td></td>
<td>SSF Wetlands ...</td>
<td>789</td>
</tr>
<tr>
<td></td>
<td>Assistance to the Operator ..</td>
<td>791</td>
</tr>
<tr>
<td></td>
<td>Summary ...</td>
<td>792</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 23</th>
<th>Economics ...</th>
<th>793</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capital Costs ...</td>
<td>793</td>
</tr>
<tr>
<td></td>
<td>Regional Variation ...</td>
<td>793</td>
</tr>
<tr>
<td></td>
<td>Direct Costs ...</td>
<td>794</td>
</tr>
<tr>
<td></td>
<td>Indirect Costs ..</td>
<td>805</td>
</tr>
<tr>
<td></td>
<td>Illustrations ...</td>
<td>806</td>
</tr>
<tr>
<td></td>
<td>Economy of Scale ...</td>
<td>807</td>
</tr>
<tr>
<td></td>
<td>Operation and Maintenance Costs ...</td>
<td>809</td>
</tr>
<tr>
<td></td>
<td>Free Water Surface Wetlands ...</td>
<td>810</td>
</tr>
<tr>
<td></td>
<td>Subsurface Flow Wetlands ...</td>
<td>810</td>
</tr>
<tr>
<td></td>
<td>Present Worth Analyses ...</td>
<td>811</td>
</tr>
<tr>
<td></td>
<td>Present Worth Concepts ...</td>
<td>812</td>
</tr>
<tr>
<td></td>
<td>Annualized Cost ..</td>
<td>814</td>
</tr>
<tr>
<td></td>
<td>Economics of Storage ...</td>
<td>814</td>
</tr>
<tr>
<td></td>
<td>Summary ..</td>
<td>817</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 24</th>
<th>Modified and Combined Systems ...</th>
<th>819</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ecological or Environmental Modifications ..</td>
<td>819</td>
</tr>
<tr>
<td></td>
<td>Microbial Enhancement ...</td>
<td>820</td>
</tr>
<tr>
<td></td>
<td>Willow Wetlands with Zero Discharge ...</td>
<td>820</td>
</tr>
<tr>
<td></td>
<td>Engineered Plants ..</td>
<td>821</td>
</tr>
<tr>
<td></td>
<td>Artificial Enclosures ..</td>
<td>821</td>
</tr>
<tr>
<td></td>
<td>Chemical Additions ..</td>
<td>822</td>
</tr>
<tr>
<td></td>
<td>Reactants via Media ...</td>
<td>822</td>
</tr>
<tr>
<td></td>
<td>Reactants via Added Streams ...</td>
<td>822</td>
</tr>
<tr>
<td></td>
<td>Operational Strategies ...</td>
<td>826</td>
</tr>
<tr>
<td></td>
<td>Step Feed ...</td>
<td>826</td>
</tr>
<tr>
<td></td>
<td>Recycle ...</td>
<td>828</td>
</tr>
</tbody>
</table>
Preface

Since the first edition of this book, treatment wetland technology has advanced on all fronts. Considerably more is known today about how treatment wetlands function. Over the last decade, wetland technology has evolved into new reactor configurations, a much broader range of treatment applications, and a dramatically expanded presence worldwide.

This growing knowledge base leads to an increased appreciation of just how complex treatment wetlands are. Because treatment wetlands are strongly influenced by a variety of internal and external ecological cycles, the assumptions that simplify the analysis of conventional reactors in the environmental engineering field can no longer be justified. As wetland technology continues to evolve, much effort is being applied to understand both short-term and long-term variability cycles within treatment wetlands. Because treatment variability strongly influences wetland design, factors that influence performance—especially the role of internal biogeochemical cycles—become paramount in understanding how treatment wetlands function. This knowledge can then be applied to make informed decisions regarding wetland design.

WHAT IS A WETLAND?

The meaning of the word wetland has been severely stretched in the treatment wetland literature. We would generally insist that wetlands have plants, water, and some kind of media. Without plants they are soil, sand, or gravel filters, or ponds. In fact, planted gravel filters—meaning all subsurface flow wetlands—have no natural wetland analog. Similarly, it is not unusual to hear discussion of “treatment wetlands” that do not have plants. We have tried to use commonly accepted terminology for systems that are generally regarded as full-scale wetland. We have tried to be reasonably careful by drawing attention to scale with the terms microcosm, mesocosm, and pilot project.

SHORT-TERM STUDIES

We find too many studies are based on infant or juvenile ecosystems, which have not had time to mature into the full suite of components that occur in fully developed wetlands. We also find too many studies focus on short-term events. This, we believe, is like interpreting the meal-time hamburger intake rate of teenage boys and girls as their sustainable caloric intake.

For instance, the development of bed clogging in HSSF wetlands has not been studied in a systematic way in the academic community. Recent knowledge of bed clogging has come from the hydraulic failure of full-scale systems (often at a high price) because clogging phenomena takes longer to develop than the tenure of a typical graduate student. As a result, the long-term viability, and maintenance requirements, of HSSF wetlands is still unknown, despite the fact that thousands of systems have been constructed worldwide. It is fortunate that there are now numerous full-scale projects to balance the data scales.

WHAT’S NEW?

Of course, there is much more information available now than in 1995 when the previous analyses were completed. The doubling time of the available data is on the order of two or three years, because old systems continue to return new information as more and more systems come on line in more and more application areas. As a consequence, about 90% of the data used in support of this book was not available at the time of the first edition. It has been reassuring to find that most of the data and interpretations of the first edition have stood up well to the test of time, but not surprising to find that some numerical interpretation had to be updated.

Data analysis in the first edition was predicated on the plug flow assumption, despite the known fact that virtually no treatment wetland actually tested out as plug flow. It is now understood that while this may provide acceptable interpolation on existing performance ranges, it can lead to very bad extrapolations that should not be used in design. Further, it has been recognized that weathering of the mixtures that comprise many of the standard wastewater parameters will also invalidate the plug flow assumption. Accordingly, a mixing parameter has been added to the mathematical representation of wetland behavior.
DESIGN TOOLS

With the advent and proliferation of desktop computing, expectations for calculational detail have risen markedly in the last 15 years. It is no longer necessary to be given a single equation, arranged to be solved for the single variable of interest. This second edition is predicated on the extensive use of spreadsheets, and the large array of iterative and optimization tools that go with them. The scientific design team for a constructed wetland must include that capability, or else be constrained to simple scale-up or scale-down for a repetitive design.

In the first edition, central tendency rate coefficients were presented, along with tables detailing the values for individual systems. Several investigators soon found that their results did not match the central tendencies, and incorrectly concluded that something must be wrong. In this edition, we have therefore opted to present the distributions of rate coefficients across numerous wetlands of all types, so that new results may be placed in that spectrum, and designs may be selected with different positions across the intersystem landscape.

The scatter of wetland outlet concentrations around an often-seasonal trend is another type of variability to be accounted. The first edition utilized maximum monthly deviations across the year. Here, the annual pattern is accounted separately, based on system performances, and various percentiles of the exceedance distribution are presented as a necessary part of design.

Among the differences between the new and the old data interpretations, the narrowing of the gaps between surface and subsurface flow system performance and cost are perhaps the most intriguing. Based on new and greatly expanded data analysis, subsurface flow wetlands do not enjoy much of a performance margin on a per unit area basis, and may be less effective than surface flow systems for some contaminants. However, the cost differential is much less than previously thought, when comparable-sized wetlands are evaluated, but still remains about a three to one capital advantage for surface flow. Therefore, nuisance and health hazard avoidance rules the selection of wetland type.

TECHNOLOGY SELECTION

In the early years of constructed wetland technology, and to some extent continuing today, there was a tendency to consider wetlands as stand-alone devices, usually accompanied by pretreatment. It is now understood that series and parallel natural system networks, perhaps involving recirculation, are sometimes better choices. Combinations of vertical flow, horizontal subsurface flow, ponds, and free water surface wetlands are increasingly being used.

THIS BOOK

This book has been updated to reflect the dramatic advances in wetland technology over the last 12 years. The authors of this second edition come from different backgrounds, and work in different aspects of the treatment wetland field. By combining our knowledge and experience, we have endeavored to present a broad range of information regarding the science, hydrology, hydraulics, reactor theory, applied design, implementation, cost, and O&M of treatment wetland systems.

The format of the second edition reflects a dual approach. Part I is organized in a manner that allows the reader to explore the internal mechanisms by which treatment wetlands operate. Existing projects and operating results from real-world treatment wetlands are utilized extensively. Internal mechanisms, their influence on treatment performance, and their effect on system variability are explored in detail in Part I.

Part II is organized to allow the reader to examine how performance data is analyzed and applied to the design process. Like the first edition, this book adopts a performance-based approach to design, in addition to presenting design tools such as loading charts and scaling factors. Continuing with the theme of practical implementation, Part II also summarizes current knowledge that is key to getting wetland projects built, including construction methods, cost information, and operation & maintenance (O&M) requirements.

We have not repeated the natural wetland fundamentals that are contained in the first edition, nor have we reiterated databases or case histories contained therein. All other topics have been nearly totally rewritten, as required by the vastly increased data sources and understanding that have developed in the many years since the first edition.

However, as much as things have changed, some things remain the same. The predictions made in the first edition about rapid evolution of treatment wetlands have certainly proven true. We expect that, if anything, this rate of change will continue to increase after the publication of this second edition, which might have been more properly called Treatment Wetlands II.

Robert H. Kadlec
Scott D. Wallace

© 2009 by Taylor & Francis Group, LLC
The authors want to acknowledge our families and friends who supported us while writing this book. For Bob Kadlec, the extreme patience of his wife Kelli was a paramount virtue, as she put up with over a year’s worth of working weekends and the virtual loss of a spouse. Scott Wallace would like to thank his coworkers at North American Wetland Engineering, who stepped forward and handled all the challenges of managing projects and running an engineering company so he could have the freedom to write this book. It is a pleasure to work with such a group of excellent people.

A tremendous amount of effort was given by Jan Vymazal, who helped immensely in the preparation of Part I of this book. His broad understanding of treatment wetlands is evidenced in his many authored and edited volumes, and we are very grateful for his assistance.

Jaime Nivala was instrumental in the completion of this book. She carefully reviewed every chapter, figure, and table; her abilities as both coordinating editor and environmental engineer were invaluable to us. Jaime did an excellent job of managing the myriad details of producing a book of this scope, and her organizational skills made the writing process much easier. This book could not exist in its current form without her extraordinary efforts.

We also want to thank Sue Knapp, who injected a breath of life into the cover design and all of the engineering drawings and hand sketches that are now the final artwork in this book.

This book expands upon many concepts advanced in the first edition, for which Robert Knight bears a full share of credit. He was a major architect of the foundation for this work.

The authors wish to acknowledge the efforts of the hundreds of engineers and scientists who have had the courage to create, innovate, and ultimately develop treatment wetlands as a viable technology to solve many environmental problems. The friendly and open communication between colleagues at international conferences has made this field a pleasure to work in, and the “lessons learned” have greatly contributed to the rapid evolution of treatment wetlands.

We are very appreciative of those projects that have shared data with us. Without the data assembled from these diverse resources, this book could not exist. The list is long, and these hundreds of project owners are owed heartfelt thanks for their generosity.

Robert H. Kadlec
Scott D. Wallace
Robert H. Kadlec holds B.S., M.S., and Ph.D. degrees in chemical engineering from the University of Wisconsin and University of Michigan, 1958–1962. That era saw the culmination of the “unit operations” approach to chemical processing, and the transition to the use of principles of transport phenomena to describe transfer and reaction rates in a wide variety of chemical and biochemical processes. Those techniques and analytical tools are also the foundation of today’s environmental engineering. Bob began applying engineering analysis to wetland processes in 1970, with the goal of managing wetlands for water quality improvement. The result was the Houghton Lake natural wetland treatment system, which is still operating successfully.

Research on that natural wetland, and on the ensuing 30 years of its operation for engineered treatment, formed the early framework for Dr. Kadlec’s development of wetland process characterization. The technology has grown tremendously, and so has Bob’s involvement in treatment wetland projects. He has participated in over 250 projects, ranging from simple feasibility studies to comprehensive university research projects. Early university studies focused primarily on wetland hydrology and water chemistry. In the course of many projects, a good deal of knowledge of practical ecology was imparted by his colleagues.

He has worked on treatment wetlands in many states and several other countries, participating in the design of over a hundred treatment wetlands. Major and long-running projects have included Houghton Lake, Michigan; Incline Village, Nevada; Hillsdale, Michigan; Columbia, Missouri; and the Everglades Stormwater Treatment Areas. He is past chairman of the International Water Association (IWA) Specialist Group on the Use of Macrophytes in Water Pollution Control. He has authored or coauthored over 130 publications on treatment wetlands, in addition to dozens of project reports. He was a proposer and developer of the U.S. EPA North American Treatment Wetland Database.

Dr. Kadlec retired from his teaching duties in 1993, and is currently doing business as Wetland Management Services, providing specialty consulting services to a wide range of governmental and private organizations. His contributions to this book are an effort to consolidate over three decades of research and practical experience.

Scott D. Wallace began his career as a wastewater treatment plant operator, and also worked as a field technician and analytical chemist. He earned a B.S. in civil engineering (1986) and an M.S. in environmental engineering (1989), both from the University of Iowa. Scott has worked full-time as a consulting engineer since 1988, and has been employed at CH2M HILL, Shive-Hattery Engineers and Architects, and HDR Engineering. Scott began designing treatment wetlands in 1992, beginning with the Indian Creek Nature Center, one of the first cold-climate subsurface flow wetlands in the United States.

In 1997, he cofounded North American Wetland Engineering (NAWE), a consulting firm focused on the development and application of treatment wetlands. Since then, he has designed over 200 treatment systems, the majority of which involve wetlands. NAWE was acquired by Jacques Whitford in 2007, and Scott currently works as a principal in the Water Resources Sector for Jacques Whitford. He consults on a wide variety of projects in the United States and internationally.

Scott has been active in research and development, and holds 5 patents on wastewater treatment systems, including aerated subsurface flow wetlands, a technology briefly discussed in this book. He is a registered professional engineer in 22 states, and has written numerous technical papers on treatment wetlands. Scott was the principal investigator for Small-Scale Constructed Wetland Treatment Systems: Feasibility, Design Criteria, and O&M Requirements, a design manual published by the Water Environment Research Foundation (WERF) in 2006. He is an active member of the IWA Specialist Group on the Use of Macrophytes in Water Pollution Control.
References

References

References

Brooks K.M. (2000a) An assessment of the environmental effects associated with bridges constructed of wood preserved with creosote, pentachlorophenol, or chrome-copper-arsenate (CCA-C), Report to the USDA Forest Service, Madison, Wisconsin.

References

CDM (2001) Final Design of the New Hanover County Leachate Treatment and Spray Irrigation Facility, Report from Camp, Dresser, & McKee (CDM) to the North Carolina Department of Natural Resources: Orlando, Florida.

CH2M Hill (2005) Additional testing for the membrane concentrate pilot wetlands project, Report to the City of Oxnard Water Division: Oxnard, California.

Christiansen J.E., Low J.B. (1970) Water requirements of waterfowl marshlands in northern Utah, No. 69–12, Utah Division of Fish and Game.

References

Cooper D.J., Griffin P., Cooper P.F. (2006a) Factors affecting the longevity of subsurface horizontal flow systems operating as tertiary treatment for sewage effluent: Part II. Dias V., Vymazal J. (eds.) Proceedings of the 10th International Conference on Wetland Systems for Water Pollution Control, 23–29 September 2006; Ministério de Ambiente, do Ordenamento do Território e do Desenvolvimento Regional (MAOTDR) and IWA: Lisbon, Portugal, pp. 621–629.

Cooper P.F. (1990) European design and operations guidelines for reed bed treatment systems, WRC: Swindon, United Kingdom.

References

Ergun S. (1952) Fluid flow through packed columns. Chemical Engineering Progress 48(9).

References

891
treating municipal wastewater. WEFTEC ‘94; U.S. EPA
Office of Research and Development: Chicago, Illinois.
George D.B., Combs D.L., Andrews H.T., Berk S.G., Kemp M.C.,
S.K., Tsai P.J. (1998) Development of guidelines and design
equations for subsurface flow constructed wetlands treating
municipal wastewater. Draft report to U.S. EPA, Coop-
erative Agreement CR818724-01-3, Cincinnati, Ohio.
Microbiology, Maier R.M., Pepper I.L., Gerba C.P. (eds.)
Academic Press: San Diego, California.
Gerber C.P., Thurston J.A., Falabi J.A., Watt P.M., Karpiscak
M.M. (1999) Optimization of artificial wetland design for
removal of indicator organisms and pathogenic protozoa.
a wetland receiving lagoon effluent: sequential model
and implications for water reuse. Water Research 35(16):
3857–3866.
of bacteria and viruses in municipal wastewaters applied to
artificial wetlands. In: Aquatic Plants for Water Treatment and
wetlands to remove nitrogen from wastewater. Journal of the
Water Pollution Control Federation 56: 152–156.
of aquatic plants in wastewater treatment by artificial wet-
tion in constructed wetlands. In: Constructed Wetlands for
Wastewater Treatment; Municipal, Industrial and Agricul-
tural, Hammer D.A. (ed.) Lewis, Chelsea, Michigan,
Arbeitsblatt ATV – A 262 Grundsätze für Bemessung, Bau
und Betrieb von Planzenbeetten für kommunales Abwasser
bei Aushubgrößen bis 1000 Einwohnerwerte, St. Augustin,
Germany.
Gessner M.O. (2000) Breakdown and nutrient dynamics of sub-
merged Phragmites shoots in the littoral zone of a temper-
of cyanide and hydrocarbons. Ecological Engineering
environment by a mixed microbial consortium. Water
Research 38(9): 2277–2284.
Giesy J.P., Kania H.J., Bowling J.W., Knight R.L., Mashburn S.,
Clarkin S. (1979) Fate and biological effects of cadmium
introduced into channel microcosms, EPA 600/3-79/039.
156 pp.
habitat establishment at a central Florida phosphate mine
site, Report No. FWS/OBS-81/38. 95 pp.
Chemical Engineering(October): 56.
Gillespie W.B. Jr., Hawkins W.B., Rodgers J.H. Jr., Cano M.L.,
Dorn P.B. (2000) Transfers and transformations of zinc in
constructed wetlands: Mitigation of refinery effluent. Eco-
of anthracene and fluoranthene by fungi isolated from an
experimental constructed wetland for wastewater treat-
data on Typha and Sphagnum wetlands constructed to
treat coal mine drainage. Proceedings of the 8th Annual
Surface Mine Drainage Task Force Symposium; Morgan-
town, West Virginia.
Girts M.A., Kleinmann R.L.P. (1986) Constructed wetlands treat-
ment of acid mine drainage: A preliminary review. In: Na-
sional Symposium on Mining, Hydrology, Sedimen-
tology, and Reclamation, University of Kentucky Press:
Louisville, Kentucky, pp. 165–171.
of Ammonium by Combined Nitrification/Adsorption
in Expanded Clay Aggregate Filters. Water Science and
constructed wetland mesocosms designed for treatment of
copper-contaminated wastewater, Report WSRC-MS-
2001-00128.. U.S. Department of Energy: Oak Ridge,
Tennessee.
minor. Aquatic Botany 4: 53–64.
Gleason P.J. (1972) The Origin, Sedimentation, and Stratigraphy of
Calctic Mud Located in the Southern Fresh-Water Ever-
glades. Ph.D. Dissertation, The Pennsylvania State Univer-
sity (University Park, Pennsylvania).
Gleason P.J., Stone P. (1994) Age, origin, and landscape evolution
of the everglades peatland. In: Everglades: The Ecosystem
and Its Restoration, Davis S.M., Ogden J.C. (eds.) St. Lucie
Effects of salinity on growth and evapotranspiration on
Godfrey R.K., Wooten J.W. (1979) Aquatic and Wetland Plants of
Southeastern United States: Monocotyledons. University
of Georgia Press: Athens, Georgia.
Southeastern United States: Dicotyledons. University of
Georgia Press: Athens, Georgia.
Godrej A.N., Drizaidar T.J., Kenel P.P., Lampe L.K., Carleton J.N.
(1999) Evaluating the use of constructed wetlands in urban
areas, Final Report on Project 92-NPS-1, Water Environ-
ment Research Foundation: Alexandria, Virginia.
zone of lakes. In: Freshwater Wetlands: Ecological Pro-
cesses and Management Potential, Good R.E., Whigham
pp. 131–144.
angiosperms. I. Dissolved components. Aquatic Botany
5: 281–300.
angiosperms. II. Particulate components. Aquatic Botany
5: 301–327.
angiosperms. III. Zostera marina L. and a conceptual

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

Haberl R., Perfler J. (1990) Seven years of research work and experience with wastewater treatment by a reed bed system. In: Constructed Wetlands for Municipal, Industrial and Agricultural Wastewater Treatment; Municipal, Industrial and Agricultural Wastewater Treatment; Municipal, Industrial and Agricultural Wastewater Treatment, Pries J.H. (ed.) Pandora Press: Columbus, Ohio, pp. 73–82.

Indiana Department of Environmental Management (1997) Constructed wetland wastewater treatment facilities guide. Water-001-NPD.

Iowa Department of Natural Resources (2001) Iowa Administrative Code 567, Chapter 69: Wastewater Treatment and Disposal Systems.

References

References

References

McBride G.B., Tanner C.C. (2000) Modelling biofilm nitrogen transformations in constructed wetland mesocosms with...

References

References

ÖNORM B 2505 (1997) Bepflanzte Bodenfilter (Pflanzenkläranlagen) - Anwendung, Bemessung, Bau und Betrieb (Subsurface flow constructed wetlands - Application, dimensioning, installation, and operation), Österreichisches Normungsinstitut: Vienna, Austria.

© 2009 by Taylor & Francis Group, LLC
Pankow J.F. (1991) Treatment Wetlands

References

Posadas B.C., LaSalle M.W. (1997) *Use of constructed wetlands to improve water quality in finfish pond culture*. Mississippi State University Coastal Research and Extension Center and the Mississippi Agricultural and Forestry Experiment Station: Biloxi, Mississippi.

Posadas B.C., LaSalle M.W. (1998) *Use of constructed wetlands to improve water quality in finfish pond culture, Phase II*. Mississippi State University Coastal Research and Extension Center and the Mississippi Agricultural and Forestry Experiment Station: Biloxi, Mississippi.

© 2009 by Taylor & Francis Group, LLC

References

References

References

References

References

References

References

WRc (1989) Translation of the German guidelines for plant based treatment systems for domestic sewage ATV.

References

© 2009 by Taylor & Francis Group, LLC
Appendix A: Lists of Basis Wetlands

This book is based on the analysis of data from many wetlands, and the associated experiences of cost and implementation. The appendix summarizes those wetland cells and systems that have contributed to this basis of analysis, by name and country (and by state when appropriate). Tables in the various chapters provide extensive referencing, dictated by availability of publications. In some instances, we have relied upon project reports and our own data compilations of published and unpublished results.

It is certain that differences in sampling and laboratory protocols have contributed significantly to the data scatter for wetland performance parameters. There is no simple way to evaluate data quality from the various wetlands, and any attempt to screen the data would be highly suspect in and of itself, as it would be a reflection of the bias of the reviewer. The periods of record vary, with some systems possessing many years of information. In general, very short periods of record, i.e., days or weeks, have been excluded. Laboratory microcosm studies are not included here because conditions are generally too far removed from field environments. We concluded early in the process of information analysis that there are no single “definitive” studies that are superior to others, despite the hopes of individual investigators. In fact, focusing on one study leads to the loss of understanding of intersystem variability and the full loading spectrum that has been explored by the greater number of wetlands.

The lists given here are intended to assist the reader in regionalizing a search for further information relevant to treatment wetlands in a particular climatic zone. However, the lists are not geographically balanced because treatment wetland technology is not geographically uniform, and data are not always accessible despite large numbers of systems in a given region.

The three main types of treatment wetlands are considered separately. Of the total of 950 basis wetlands, 488 are FWS, 362 are HSSF, and 100 are VF. It is understood that these proportions are not indicative of the entire universe of operating systems, but it is believed that the sample sizes are sufficient to characterize the three variants of the technology.

The systems listed in Tables A.1, A.2, and A.3 provided data that were utilized to determine k-rates, temperature coefficients, or background concentrations. This is by no means a definitive listing of treatment wetlands, but does provide the reader an indication of systems with significant monitoring data.

TABLE A.1
Free Water Surface Wetlands

<table>
<thead>
<tr>
<th>FWS System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahco</td>
<td></td>
<td></td>
<td>Argentina</td>
</tr>
<tr>
<td>San Tomé</td>
<td></td>
<td></td>
<td>Argentina</td>
</tr>
<tr>
<td>Blacktown</td>
<td></td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Blacktown</td>
<td></td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Blacktown</td>
<td></td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Byron Bay</td>
<td>WB2-3</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Byron Bay</td>
<td>WB3-4</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Byron Bay</td>
<td>WB4-5</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Byron Bay</td>
<td>WB5-6</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Byron Bay</td>
<td>WB6-7</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Richmond</td>
<td>Open</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Richmond</td>
<td>Myriophyllum</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Tom’s Gully</td>
<td></td>
<td>Northern Territory</td>
<td>Australia</td>
</tr>
<tr>
<td>Woodcutters</td>
<td></td>
<td>Northern Territory</td>
<td>Australia</td>
</tr>
<tr>
<td>Calamvale</td>
<td></td>
<td>Queensland</td>
<td>Australia</td>
</tr>
<tr>
<td>Coorparoo</td>
<td></td>
<td>Queensland</td>
<td>Australia</td>
</tr>
<tr>
<td>Piricicaba</td>
<td></td>
<td>Brazil</td>
<td></td>
</tr>
<tr>
<td>Vancouver</td>
<td>P15.1</td>
<td>British Columbia</td>
<td>Canada</td>
</tr>
<tr>
<td>Vancouver</td>
<td>P15.2</td>
<td>British Columbia</td>
<td>Canada</td>
</tr>
<tr>
<td>Vancouver</td>
<td>P30.1</td>
<td>British Columbia</td>
<td>Canada</td>
</tr>
<tr>
<td>Vancouver</td>
<td>P30.2</td>
<td>British Columbia</td>
<td>Canada</td>
</tr>
<tr>
<td>Vancouver</td>
<td>UP30.1</td>
<td>British Columbia</td>
<td>Canada</td>
</tr>
<tr>
<td>Vancouver</td>
<td>UP30.2</td>
<td>British Columbia</td>
<td>Canada</td>
</tr>
<tr>
<td>Oak Hammock</td>
<td></td>
<td>Manitoba</td>
<td>Canada</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>FWS System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roblin</td>
<td></td>
<td>Manitoba</td>
<td>Canada</td>
</tr>
<tr>
<td>Simplot</td>
<td>Brandon</td>
<td>Manitoba</td>
<td>Canada</td>
</tr>
<tr>
<td>Hay River</td>
<td></td>
<td>Northwest Territories</td>
<td>Canada</td>
</tr>
<tr>
<td>Hebert</td>
<td></td>
<td>Nova Scotia</td>
<td>Canada</td>
</tr>
<tr>
<td>Brighton</td>
<td></td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Cobalt</td>
<td></td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Elliot Lake</td>
<td>Elliot Lake</td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Essex County</td>
<td></td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Falconbridge</td>
<td></td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Gloucester</td>
<td></td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Kanata</td>
<td>Kanata</td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Kitchener</td>
<td></td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Lambton</td>
<td></td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Listowel 1</td>
<td>1</td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Listowel 2</td>
<td>2</td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Listowel 3</td>
<td>3</td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Listowel 4</td>
<td>4</td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Listowel 5</td>
<td>5</td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Musselwhite</td>
<td></td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Perth County</td>
<td></td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Region of Ottawa–Carlton</td>
<td></td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Riverwalk</td>
<td></td>
<td>Ontario</td>
<td>Canada</td>
</tr>
<tr>
<td>Arvida</td>
<td></td>
<td>Quebec</td>
<td>Canada</td>
</tr>
<tr>
<td>Fontanges</td>
<td></td>
<td>Quebec</td>
<td>Canada</td>
</tr>
<tr>
<td>Estevan</td>
<td></td>
<td>Saskatchewan</td>
<td>Canada</td>
</tr>
<tr>
<td>Humboldt</td>
<td></td>
<td>Saskatchewan</td>
<td>Canada</td>
</tr>
<tr>
<td>Guangdong</td>
<td></td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Alastaro</td>
<td></td>
<td>Finland</td>
<td></td>
</tr>
<tr>
<td>Flytrisk</td>
<td></td>
<td>Finland</td>
<td></td>
</tr>
<tr>
<td>Hovi</td>
<td></td>
<td>Finland</td>
<td></td>
</tr>
<tr>
<td>Kis-Balaton</td>
<td></td>
<td>Hungary</td>
<td></td>
</tr>
<tr>
<td>Warangal</td>
<td></td>
<td>India</td>
<td></td>
</tr>
<tr>
<td>County Galway</td>
<td>Bed 1</td>
<td>Ireland</td>
<td></td>
</tr>
<tr>
<td>County Galway</td>
<td>Bed 2</td>
<td>Ireland</td>
<td></td>
</tr>
<tr>
<td>Johnstown Castle</td>
<td></td>
<td>Ireland</td>
<td></td>
</tr>
<tr>
<td>Kilmkeadan</td>
<td></td>
<td>Ireland</td>
<td></td>
</tr>
<tr>
<td>Rathermon</td>
<td></td>
<td>Ireland</td>
<td></td>
</tr>
<tr>
<td>Waterford</td>
<td>Anne Valley</td>
<td>Ireland</td>
<td></td>
</tr>
<tr>
<td>Cecchi</td>
<td></td>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>Chiampo Valley</td>
<td></td>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>La Croce</td>
<td></td>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>Ormellaia</td>
<td></td>
<td>Italy</td>
<td></td>
</tr>
<tr>
<td>Harutori 1</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Harutori 2</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Harutori 3</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Kahokugata</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Kojima 1</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Kojima 2</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Mizomoto</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Nagano 1</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Nagano 2</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Nagano 3</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Nagano 4</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Sanno 1</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
</tbody>
</table>
TABLE A.1 (CONTINUED)
Free Water Surface Wetlands

<table>
<thead>
<tr>
<th>FWS System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanno</td>
<td>2</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Sanno</td>
<td>3</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Sanno</td>
<td>4</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Sanno PWRI</td>
<td>1</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Sanno PWRI</td>
<td>2</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Sanno PWRI</td>
<td>3</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Sanno PWRI</td>
<td>4</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Sanno PWRI</td>
<td>5</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Sanno River</td>
<td>River</td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Seimei</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Watarase</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Yasato-machi</td>
<td></td>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Marrakech</td>
<td></td>
<td>Morrocco</td>
<td></td>
</tr>
<tr>
<td>Texel</td>
<td>1</td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td>Texel</td>
<td>2</td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td>Texel</td>
<td>3</td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td>Texel</td>
<td>4</td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td>Texel</td>
<td>5</td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td>Texel</td>
<td>6</td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td>Texel</td>
<td>7</td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td>Texel</td>
<td>8</td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td>Beachlands/Maraetai</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Blenheim</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Christchurch</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hautoriu</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hikumutu WWTP</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Horotiu</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Kohukohu</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Opunake</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Portland</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Pukekohe</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Rangijaru</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Taumaranui</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Titoki</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Toenepi</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Wellsford</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Whangarei</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Bolstad</td>
<td></td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Braskerud</td>
<td>A</td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Braskerud</td>
<td>C</td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Braskerud</td>
<td>F</td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Braskerud</td>
<td>G1</td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Braskerud</td>
<td>G2</td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Eival</td>
<td></td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Orcopampa</td>
<td></td>
<td>Peru</td>
<td></td>
</tr>
<tr>
<td>Tucush</td>
<td></td>
<td>Peru</td>
<td></td>
</tr>
<tr>
<td>Frambork</td>
<td></td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Motorway</td>
<td></td>
<td>Slovenia</td>
<td></td>
</tr>
<tr>
<td>Mpophomeni</td>
<td></td>
<td>South Africa</td>
<td></td>
</tr>
<tr>
<td>Esklistuna</td>
<td>Ekeby</td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Hassleholms</td>
<td>Magle</td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Isgrannatorp</td>
<td></td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Linkoping</td>
<td></td>
<td>Sweden</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>FWS System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxelösund</td>
<td></td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Snogeröd</td>
<td></td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Vomb East</td>
<td></td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Vomb West</td>
<td></td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Kaohsiung</td>
<td></td>
<td>Taiwan</td>
<td></td>
</tr>
<tr>
<td>Airtón</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Bishop Wilton</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Brentwood</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Carperby</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Cherry Burton</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Crow Edge</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Dagenham</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Meltham</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Northumberland</td>
<td>Shilbottle</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Slingsby</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Stockley</td>
<td>Bed 1</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Stockley</td>
<td>Bed 2</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Stockley</td>
<td>Bed 3</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Tupton</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Wentworth Castle</td>
<td>Bed 1</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Wentworth Castle</td>
<td>Bed 2</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Wentworth Castle</td>
<td>Bed 3</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Wentworth Castle</td>
<td>Bed 4</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Wetwang</td>
<td>Bed 1</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Wetwang</td>
<td>Bed 2</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Wetwang</td>
<td>Bed 3</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Wheal Jane</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Auburn Poultry</td>
<td>1</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Auburn Poultry</td>
<td>2</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Auburn Poultry</td>
<td>3</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Fort Deposit</td>
<td>T:1–2</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Hurtsboro</td>
<td>1</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Hurtsboro</td>
<td>2</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Muscle Shoals</td>
<td></td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Sand Mountain</td>
<td>1</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Sand Mountain</td>
<td>2</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Sand Mountain</td>
<td>3</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Sand Mountain</td>
<td>4</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Sand Mountain</td>
<td>5</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Widows Creek</td>
<td></td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Anchorage</td>
<td></td>
<td>Alaska</td>
<td>United States</td>
</tr>
<tr>
<td>Fairbanks</td>
<td></td>
<td>Alaska</td>
<td>United States</td>
</tr>
<tr>
<td>Kingman</td>
<td></td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Show Low</td>
<td></td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>C1</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>C2</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>H1</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>H2</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>R1</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>R2</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>R3</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>R4</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>R5</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>R6</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>FWS System Name</td>
<td>Identifier</td>
<td>State/Province</td>
<td>Country</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>R7</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>R8</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>R9</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>R10</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>R11</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tres Rios</td>
<td>R12</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tucson</td>
<td>Sweetwater</td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Arcata Enhancement</td>
<td>Gearheart</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Arcata Enhancement</td>
<td>Allen</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Arcata Enhancement</td>
<td>Hauser</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Arcata Treatment</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Brawley</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Corcoran</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>DUST</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Gustine</td>
<td>1A</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Gustine</td>
<td>1B</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Gustine</td>
<td>1C</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Gustine</td>
<td>1D</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Gustine</td>
<td>2A</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Gustine</td>
<td>2B</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Gustine</td>
<td>6D</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Hayward</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Hemet</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Imperial</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Irvine Ranch</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Lake Tahoe</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Mountain View Sanitary District</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Oxnard</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Prado</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Richmond</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Sacramento</td>
<td>1</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Sacramento</td>
<td>2</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Sacramento</td>
<td>3</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Sacramento</td>
<td>4</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Sacramento</td>
<td>6 A & B</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Sacramento</td>
<td>7</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Sacramento</td>
<td>8</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Sacramento</td>
<td>9</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Sacramento</td>
<td>10</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>San Diego</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Santa Rosa</td>
<td>Kelly Farm</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Avondale</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td>Bennett</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td>Crowley</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td>Crowley Correctional Facility</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td>Delta</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td>Dove Creek</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td>La Veta</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td>Manzanola</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td>Ouray</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td>Platteville</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td>Shop Creek</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td>Silt</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
</tbody>
</table>

(Continued)
TABLE A.1 (CONTINUED)
Free Water Surface Wetlands

<table>
<thead>
<tr>
<th>FWS System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Connecticut</td>
<td>T: 1–3</td>
<td>Connecticut</td>
<td>United States</td>
</tr>
<tr>
<td>Apalachicola</td>
<td></td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Apopka</td>
<td></td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Boney Marsh</td>
<td></td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Boot</td>
<td></td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Champion</td>
<td>A</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Champion</td>
<td>B</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Champion</td>
<td>C</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Champion</td>
<td>D</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Champion</td>
<td>E</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Champion</td>
<td>F</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Clermont</td>
<td>Plot H</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Deer Park</td>
<td>1A</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Escambia County</td>
<td></td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Full Scale</td>
<td>STA2</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Full Scale</td>
<td>STA1E</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Full Scale</td>
<td>STA1W</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Full Scale</td>
<td>STA3/4</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Full Scale</td>
<td>STA 5</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Full Scale</td>
<td>STA6</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>ENRP</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC1</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC2</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC3</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC4</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC5</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC6</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC7</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC8</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC9</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC10</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC11</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC12</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC13</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC14</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>STC15</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC1</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC2</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC3</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC4</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC5</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC6</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC7</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC8</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC9</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC10</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC11</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC12</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC13</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC14</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Nutrient Removal Project</td>
<td>NTC15</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Periphyton</td>
<td>F1</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Periphyton</td>
<td>F2</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Everglades Periphyton</td>
<td>F3</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>FWS System Name</td>
<td>Identifier</td>
<td>State/Province</td>
<td>Country</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Everglades Periphyton</td>
<td>F4</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Gainesville</td>
<td></td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Greenwood</td>
<td></td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Hidden River</td>
<td></td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Lakeland 1</td>
<td>1</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Lakeland 2</td>
<td>2</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Lakeland 3</td>
<td>3</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Lakeland 4</td>
<td>4</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Lakeland 5</td>
<td>5</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Lakeland 6</td>
<td>6</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Lakeland 7</td>
<td>7</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Orange County Eastern Service Area 1</td>
<td>1</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Orange County Eastern Service Area 2</td>
<td>2</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Orlando Easterly</td>
<td>Stratum 1</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Orlando Easterly</td>
<td>Stratum 2</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Orlando Easterly</td>
<td>Stratum 3</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Orlando Easterly Wetland</td>
<td>Stratum 1</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Orlando Easterly Wetland</td>
<td>Stratum 2</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Orlando Easterly Wetland</td>
<td>Stratum 3</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Orlando Easterly Wetland</td>
<td>Stratum 4</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Palm Beach County</td>
<td></td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Poinciana</td>
<td>T:1</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Reedy Creek OFWTS</td>
<td>2</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Reedy Creek WTS1</td>
<td>1</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Sanford</td>
<td></td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Silver Springs Shores</td>
<td>Lake Coral</td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Tampa Office</td>
<td></td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Titusville</td>
<td></td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Waldo</td>
<td></td>
<td>Florida</td>
<td>United States</td>
</tr>
<tr>
<td>Augusta</td>
<td></td>
<td>Georgia</td>
<td>United States</td>
</tr>
<tr>
<td>Clayton County</td>
<td></td>
<td>Georgia</td>
<td>United States</td>
</tr>
<tr>
<td>McMichael Dairy</td>
<td></td>
<td>Georgia</td>
<td>United States</td>
</tr>
<tr>
<td>Cataldo</td>
<td></td>
<td>Idaho</td>
<td>United States</td>
</tr>
<tr>
<td>Idaho Springs</td>
<td>Cell A</td>
<td>Idaho</td>
<td>United States</td>
</tr>
<tr>
<td>Des Plaines</td>
<td>3</td>
<td>Illinois</td>
<td>United States</td>
</tr>
<tr>
<td>Des Plaines</td>
<td>4</td>
<td>Illinois</td>
<td>United States</td>
</tr>
<tr>
<td>Des Plaines</td>
<td>5</td>
<td>Illinois</td>
<td>United States</td>
</tr>
<tr>
<td>Des Plaines</td>
<td>6</td>
<td>Illinois</td>
<td>United States</td>
</tr>
<tr>
<td>Embarrass River</td>
<td>A</td>
<td>Illinois</td>
<td>United States</td>
</tr>
<tr>
<td>Embarrass River</td>
<td>B</td>
<td>Illinois</td>
<td>United States</td>
</tr>
<tr>
<td>Embarrass River</td>
<td>D</td>
<td>Illinois</td>
<td>United States</td>
</tr>
<tr>
<td>Norwood Farms</td>
<td></td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>A1</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>A2</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>A3</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>A4</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>B1</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>B2</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>B3</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>B4</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>C1</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>C2</td>
<td>Indiana</td>
<td>United States</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>FWS System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purdue University</td>
<td>C3</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>C4</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>D1</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>D3</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Purdue University</td>
<td>D4</td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Tom Brothers Farm</td>
<td></td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Army Ammunition Plant</td>
<td></td>
<td>Iowa</td>
<td>United States</td>
</tr>
<tr>
<td>Brenton Cattle</td>
<td></td>
<td>Iowa</td>
<td>United States</td>
</tr>
<tr>
<td>Norwalk</td>
<td></td>
<td>Iowa</td>
<td>United States</td>
</tr>
<tr>
<td>Norwalk</td>
<td></td>
<td>Iowa</td>
<td>United States</td>
</tr>
<tr>
<td>Benton</td>
<td>1 Cattail</td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Benton</td>
<td>2 Woolgrass</td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Crittenden County</td>
<td></td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Mercer County</td>
<td></td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Pembroke</td>
<td></td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Russelville</td>
<td></td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Union County</td>
<td></td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Norco</td>
<td></td>
<td>Louisiana</td>
<td>United States</td>
</tr>
<tr>
<td>Saint Louis University</td>
<td>1</td>
<td>Louisiana</td>
<td>United States</td>
</tr>
<tr>
<td>Saint Louis University</td>
<td>2</td>
<td>Louisiana</td>
<td>United States</td>
</tr>
<tr>
<td>Saint Louis University</td>
<td>3</td>
<td>Louisiana</td>
<td>United States</td>
</tr>
<tr>
<td>University of SW Louisiana</td>
<td>1</td>
<td>Louisiana</td>
<td>United States</td>
</tr>
<tr>
<td>University of SW Louisiana</td>
<td>2</td>
<td>Louisiana</td>
<td>United States</td>
</tr>
<tr>
<td>University of SW Louisiana</td>
<td>3</td>
<td>Louisiana</td>
<td>United States</td>
</tr>
<tr>
<td>Braun</td>
<td>Braun</td>
<td>Maryland</td>
<td>United States</td>
</tr>
<tr>
<td>Eastern Shore</td>
<td>B1</td>
<td>Maryland</td>
<td>United States</td>
</tr>
<tr>
<td>Eastern Shore</td>
<td>B2</td>
<td>Maryland</td>
<td>United States</td>
</tr>
<tr>
<td>Foster</td>
<td>Foster</td>
<td>Maryland</td>
<td>United States</td>
</tr>
<tr>
<td>Mays Chapel</td>
<td></td>
<td>Maryland</td>
<td>United States</td>
</tr>
<tr>
<td>Queen Anne</td>
<td></td>
<td>Maryland</td>
<td>United States</td>
</tr>
<tr>
<td>Great Meadows</td>
<td></td>
<td>Massachusetts</td>
<td>United States</td>
</tr>
<tr>
<td>Ann Arbor</td>
<td></td>
<td>Michigan</td>
<td>United States</td>
</tr>
<tr>
<td>Bellaire</td>
<td></td>
<td>Michigan</td>
<td>United States</td>
</tr>
<tr>
<td>Commerce Township</td>
<td></td>
<td>Michigan</td>
<td>United States</td>
</tr>
<tr>
<td>Houghton Lake</td>
<td>1</td>
<td>Michigan</td>
<td>United States</td>
</tr>
<tr>
<td>Houghton Lake</td>
<td>2</td>
<td>Michigan</td>
<td>United States</td>
</tr>
<tr>
<td>Kinross (Kimcheloe)</td>
<td>1</td>
<td>Michigan</td>
<td>United States</td>
</tr>
<tr>
<td>Lansing</td>
<td></td>
<td>Michigan</td>
<td>United States</td>
</tr>
<tr>
<td>Lake McCarons</td>
<td></td>
<td>Michigan</td>
<td>United States</td>
</tr>
<tr>
<td>Lake McCarrons</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Spring Lake</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Hernando</td>
<td>1</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Hernando</td>
<td>2</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Hernando</td>
<td>3</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Hernando</td>
<td>4</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Leaf River Pond 1</td>
<td></td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Leaf River Pond 2</td>
<td></td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Leaf River Pond 3</td>
<td></td>
<td>Mississippi</td>
<td>United States</td>
</tr>
</tbody>
</table>
TABLE A.1 (CONTINUED)
Free Water Surface Wetlands

<table>
<thead>
<tr>
<th>FWS System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newton</td>
<td>1</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Newton</td>
<td>2</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Newton</td>
<td>3</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Newton</td>
<td>4</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Newton</td>
<td>5</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Newton</td>
<td>6</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Pontotoc</td>
<td>1</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Pontotoc</td>
<td>2</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>West Jackson County</td>
<td>1–2</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>West Jackson County</td>
<td>T:1–7</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Weyerhauser</td>
<td></td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Columbia</td>
<td></td>
<td>Missouri</td>
<td>United States</td>
</tr>
<tr>
<td>Butte</td>
<td></td>
<td>Montana</td>
<td>United States</td>
</tr>
<tr>
<td>Incline Village</td>
<td>1</td>
<td>Nevada</td>
<td>United States</td>
</tr>
<tr>
<td>Incline Village</td>
<td>2</td>
<td>Nevada</td>
<td>United States</td>
</tr>
<tr>
<td>Incline Village</td>
<td>3</td>
<td>Nevada</td>
<td>United States</td>
</tr>
<tr>
<td>Incline Village</td>
<td>4</td>
<td>Nevada</td>
<td>United States</td>
</tr>
<tr>
<td>Incline Village</td>
<td>5</td>
<td>Nevada</td>
<td>United States</td>
</tr>
<tr>
<td>Incline Village</td>
<td>6</td>
<td>Nevada</td>
<td>United States</td>
</tr>
<tr>
<td>Incline Village</td>
<td>7</td>
<td>Nevada</td>
<td>United States</td>
</tr>
<tr>
<td>Brookhaven</td>
<td></td>
<td>Meadow Marsh Pond System</td>
<td>New York</td>
</tr>
<tr>
<td>Irondequoit Creek</td>
<td></td>
<td>New York</td>
<td>United States</td>
</tr>
<tr>
<td>Monroe County</td>
<td></td>
<td>New York</td>
<td>United States</td>
</tr>
<tr>
<td>Moodna Basin</td>
<td></td>
<td>New York</td>
<td>United States</td>
</tr>
<tr>
<td>Seneca Army Depot</td>
<td></td>
<td>New York</td>
<td>United States</td>
</tr>
<tr>
<td>Duplin County</td>
<td>1</td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>Duplin County</td>
<td>2</td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>Duplin County</td>
<td>3</td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>Duplin County</td>
<td>4</td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>Greensboro</td>
<td></td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>Herrings</td>
<td></td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>Hilton Head Plantation</td>
<td></td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>New Hanover Township</td>
<td>Raw</td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>New Hanover Township</td>
<td>Treated</td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>Sea Pines</td>
<td>Boggy Gut</td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>Hillisboro</td>
<td></td>
<td>North Dakota</td>
<td>United States</td>
</tr>
<tr>
<td>Mandan</td>
<td></td>
<td>North Dakota</td>
<td>United States</td>
</tr>
<tr>
<td>Minot</td>
<td></td>
<td>North Dakota</td>
<td>United States</td>
</tr>
<tr>
<td>Franklin County</td>
<td></td>
<td>Ohio</td>
<td>United States</td>
</tr>
<tr>
<td>Lick Run</td>
<td></td>
<td>Ohio</td>
<td>United States</td>
</tr>
<tr>
<td>Olentangy</td>
<td>1</td>
<td>Ohio</td>
<td>United States</td>
</tr>
<tr>
<td>Olentangy</td>
<td>2</td>
<td>Ohio</td>
<td>United States</td>
</tr>
<tr>
<td>Cannon Beach</td>
<td></td>
<td>Oregon</td>
<td>United States</td>
</tr>
<tr>
<td>Hillisboro</td>
<td>Jackson Bottoms 1–17</td>
<td>Oregon</td>
<td>United States</td>
</tr>
<tr>
<td>Mt. Angel</td>
<td></td>
<td>Oregon</td>
<td>United States</td>
</tr>
<tr>
<td>Oregon State University</td>
<td>1</td>
<td>Oregon</td>
<td>United States</td>
</tr>
<tr>
<td>Oregon State University</td>
<td>2</td>
<td>Oregon</td>
<td>United States</td>
</tr>
<tr>
<td>Oregon State University</td>
<td>3</td>
<td>Oregon</td>
<td>United States</td>
</tr>
<tr>
<td>Oregon State University</td>
<td>4</td>
<td>Oregon</td>
<td>United States</td>
</tr>
<tr>
<td>Oregon State University</td>
<td>5</td>
<td>Oregon</td>
<td>United States</td>
</tr>
<tr>
<td>Oregon State University</td>
<td>6</td>
<td>Oregon</td>
<td>United States</td>
</tr>
<tr>
<td>Silverton</td>
<td></td>
<td>Oregon</td>
<td>United States</td>
</tr>
</tbody>
</table>

(Continued)
TABLE A.1 (CONTINUED)
Free Water Surface Wetlands

<table>
<thead>
<tr>
<th>FWS System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conestoga</td>
<td></td>
<td>Pennsylvania</td>
<td>United States</td>
</tr>
<tr>
<td>Cumberland County</td>
<td></td>
<td>Pennsylvania</td>
<td>United States</td>
</tr>
<tr>
<td>Friendship Hill</td>
<td></td>
<td>Pennsylvania</td>
<td>United States</td>
</tr>
<tr>
<td>Iselin</td>
<td></td>
<td>Pennsylvania</td>
<td>United States</td>
</tr>
<tr>
<td>Neshaminy</td>
<td></td>
<td>Pennsylvania</td>
<td>United States</td>
</tr>
<tr>
<td>Palmetton</td>
<td></td>
<td>Pennsylvania</td>
<td>United States</td>
</tr>
<tr>
<td>Springdale</td>
<td></td>
<td>Pennsylvania</td>
<td>United States</td>
</tr>
<tr>
<td>Central Slough</td>
<td>T:1</td>
<td>South Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>Savannah River</td>
<td></td>
<td>South Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>Vereen</td>
<td>Bear Bay 1</td>
<td>South Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>Arlington</td>
<td></td>
<td>South Dakota</td>
<td>United States</td>
</tr>
<tr>
<td>Alcoa</td>
<td>Blue Pond</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Alcoa</td>
<td>Duck Spring</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Milan</td>
<td></td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Beaumont</td>
<td></td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Tarrant</td>
<td>1</td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Tarrant</td>
<td>2</td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Tarrant</td>
<td>3</td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Tarrant</td>
<td>4</td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Tarrant</td>
<td>5</td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Tarrant</td>
<td>6</td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Tarrant</td>
<td>7</td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Tarrant</td>
<td>8</td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Tarrant</td>
<td>9</td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Victoria</td>
<td></td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Crestwood</td>
<td></td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Franklin Farms</td>
<td></td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Bellevue</td>
<td></td>
<td>Washington</td>
<td>United States</td>
</tr>
<tr>
<td>Connell</td>
<td>Pilot</td>
<td>Washington</td>
<td>United States</td>
</tr>
<tr>
<td>Connell</td>
<td>Full</td>
<td>Washington</td>
<td>United States</td>
</tr>
<tr>
<td>Renton</td>
<td></td>
<td>Washington</td>
<td>United States</td>
</tr>
<tr>
<td>Albright</td>
<td></td>
<td>West Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Brillion</td>
<td></td>
<td>Wisconsin</td>
<td>United States</td>
</tr>
<tr>
<td>David Gerrits Farm</td>
<td>1 & 2</td>
<td>Wisconsin</td>
<td>United States</td>
</tr>
<tr>
<td>David Gerrits Farm</td>
<td>3 & 4</td>
<td>Wisconsin</td>
<td>United States</td>
</tr>
<tr>
<td>Drummond</td>
<td></td>
<td>Wisconsin</td>
<td>United States</td>
</tr>
<tr>
<td>Lake Nebagamon</td>
<td></td>
<td>Wisconsin</td>
<td>United States</td>
</tr>
</tbody>
</table>

TABLE A.2
Horizontal Subsurface Flow Wetlands

<table>
<thead>
<tr>
<th>HSSF System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lismore</td>
<td>GB1</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Lismore</td>
<td>GB2</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Richmond</td>
<td>Gravel</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Richmond</td>
<td>Mix A</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Richmond</td>
<td>Mix B</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Richmond</td>
<td>Schoeno</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Richmond</td>
<td>Typha</td>
<td>New South Wales</td>
<td>Australia</td>
</tr>
<tr>
<td>Brisbane</td>
<td>A</td>
<td>Queensland</td>
<td>Australia</td>
</tr>
<tr>
<td>Brisbane</td>
<td>B</td>
<td>Queensland</td>
<td>Australia</td>
</tr>
<tr>
<td>Brisbane</td>
<td>C</td>
<td>Queensland</td>
<td>Australia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HSSF System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brisbane</td>
<td>D</td>
<td>Queensland</td>
<td>Australia</td>
</tr>
<tr>
<td>Alstonville</td>
<td></td>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>Edmonton</td>
<td></td>
<td>Alberta</td>
<td>Canada</td>
</tr>
<tr>
<td>Princeport</td>
<td></td>
<td>Nova Scotia</td>
<td>Canada</td>
</tr>
<tr>
<td>Monteverde 1</td>
<td>1</td>
<td></td>
<td>Costa Rica</td>
</tr>
<tr>
<td>Monteverde 2</td>
<td>2</td>
<td></td>
<td>Costa Rica</td>
</tr>
<tr>
<td>Brelev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chmelna</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Doksy</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Kacice</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Koberovy</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Kolodeje</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Krucemburk</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Lysny</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Morina</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Nucice</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Ondrejov</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Onsov</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Osova Bitvyska</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Velesice</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Zintenice</td>
<td></td>
<td></td>
<td>Czech Republic</td>
</tr>
<tr>
<td>Abu Attwa</td>
<td></td>
<td></td>
<td>Egypt</td>
</tr>
<tr>
<td>Ismalia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brandenburg</td>
<td></td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Júlich Phragmites</td>
<td></td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Júlich Typha</td>
<td></td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Langenreichenbach</td>
<td></td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Wiedersburg</td>
<td></td>
<td></td>
<td>Germany</td>
</tr>
<tr>
<td>Thrace MG-Z</td>
<td></td>
<td></td>
<td>Greece</td>
</tr>
<tr>
<td>Thrace MG-C</td>
<td></td>
<td></td>
<td>Greece</td>
</tr>
<tr>
<td>Thrace MG-R</td>
<td></td>
<td></td>
<td>Greece</td>
</tr>
<tr>
<td>Sakhnin</td>
<td></td>
<td></td>
<td>Israel</td>
</tr>
<tr>
<td>Cecchi</td>
<td></td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>Chiampo Valley Phragmites</td>
<td></td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>Chiampo Valley Carex</td>
<td></td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>Florence</td>
<td></td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>La Croce</td>
<td></td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>Ornellaia</td>
<td></td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>Putignano</td>
<td></td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>San Michele de Ganzaria</td>
<td></td>
<td></td>
<td>Italy</td>
</tr>
<tr>
<td>Akumal</td>
<td></td>
<td></td>
<td>Mexico</td>
</tr>
<tr>
<td>Pachuca</td>
<td></td>
<td></td>
<td>Mexico</td>
</tr>
<tr>
<td>UNAM</td>
<td></td>
<td></td>
<td>Mexico</td>
</tr>
<tr>
<td>Rabat</td>
<td></td>
<td></td>
<td>Morocco</td>
</tr>
<tr>
<td>Drury</td>
<td></td>
<td></td>
<td>New Zealand</td>
</tr>
<tr>
<td>Hamilton 1 Bulrush</td>
<td></td>
<td></td>
<td>New Zealand</td>
</tr>
<tr>
<td>Hamilton 1 Unplanted</td>
<td></td>
<td></td>
<td>New Zealand</td>
</tr>
<tr>
<td>Hamilton 2 Bulrush</td>
<td></td>
<td></td>
<td>New Zealand</td>
</tr>
<tr>
<td>Hamilton 2 Unplanted</td>
<td></td>
<td></td>
<td>New Zealand</td>
</tr>
<tr>
<td>Hamilton 3 Bulrush</td>
<td></td>
<td></td>
<td>New Zealand</td>
</tr>
<tr>
<td>Hamilton 3 Unplanted</td>
<td></td>
<td></td>
<td>New Zealand</td>
</tr>
<tr>
<td>Hamilton 4 Bulrush</td>
<td></td>
<td></td>
<td>New Zealand</td>
</tr>
<tr>
<td>Hamilton 4 Unplanted</td>
<td></td>
<td></td>
<td>New Zealand</td>
</tr>
</tbody>
</table>

(Continued)
TABLE A.2 (CONTINUED)
Horizontal Subsurface Flow Wetlands

<table>
<thead>
<tr>
<th>HSSF System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamilton</td>
<td>5 Bulrush</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hamilton</td>
<td>Dairy 1</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hamilton</td>
<td>Dairy 2</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hamilton</td>
<td>Dairy 3</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hamilton</td>
<td>Dairy 4</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hamilton</td>
<td>Dairy 5</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hamilton</td>
<td>Meat 1</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hamilton</td>
<td>Meat 2</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hamilton</td>
<td>Meat 3</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hamilton</td>
<td>M1</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hamilton</td>
<td>D1</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hamilton</td>
<td>D2</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Hamilton</td>
<td>D2A</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Omaha</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Opononi</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Waipoua</td>
<td></td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>Fugerness</td>
<td></td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Haugstein</td>
<td></td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Jolle</td>
<td></td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Jordforsk</td>
<td></td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Ostegarden</td>
<td></td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Stange</td>
<td></td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Tveter</td>
<td>1</td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Tveter</td>
<td>2</td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Golczew</td>
<td></td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Gralewo</td>
<td></td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Gronowo</td>
<td></td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Lubiejewo</td>
<td></td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Nieskoez</td>
<td></td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Nieskoez</td>
<td></td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Rokitno</td>
<td></td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Ryjewo</td>
<td></td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>Mpopohomeni</td>
<td></td>
<td>South Africa</td>
<td></td>
</tr>
<tr>
<td>Pretoria</td>
<td>1</td>
<td>South Africa</td>
<td></td>
</tr>
<tr>
<td>Pretoria</td>
<td>2</td>
<td>South Africa</td>
<td></td>
</tr>
<tr>
<td>Pretoria</td>
<td>3</td>
<td>South Africa</td>
<td></td>
</tr>
<tr>
<td>Barcelona</td>
<td>A1</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Barcelona</td>
<td>A2</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Barcelona</td>
<td>B1</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Barcelona</td>
<td>B2</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Barcelona</td>
<td>C1</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Barcelona</td>
<td>C2</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Barcelona</td>
<td>D1</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Barcelona</td>
<td>D2</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Dar es Salaam</td>
<td>1</td>
<td>Tanzania</td>
<td></td>
</tr>
<tr>
<td>Dar es Salaam</td>
<td>2</td>
<td>Tanzania</td>
<td></td>
</tr>
<tr>
<td>Chiang Mai</td>
<td></td>
<td>Thailand</td>
<td></td>
</tr>
<tr>
<td>Pathumthani</td>
<td></td>
<td>Thailand</td>
<td></td>
</tr>
<tr>
<td>Acle</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Ashby Folville</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Audlem</td>
<td>1</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Audlem</td>
<td>2</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Audlem</td>
<td>3</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Audlem</td>
<td>4</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>HSSF System Name</td>
<td>Identifier</td>
<td>State/Province</td>
<td>Country</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Audlem</td>
<td>5</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Audlem</td>
<td>6</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Audlem</td>
<td>7</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Audlem</td>
<td>8</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Audlem</td>
<td>9</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Audlem</td>
<td>10</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Broxted</td>
<td>Lower</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Broxted</td>
<td>Upper</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Budds Farm</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Castleroe</td>
<td>1</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Castleroe</td>
<td>2</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Castleroe</td>
<td>3</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Castleroe</td>
<td>4</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Castleroe Peat bed</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Cherry Burton</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Claverley</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Culcrow</td>
<td>1</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Ditton Priors</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Drointon</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Earlswood</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Earlswood</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>East Haddon</td>
<td>2</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>East Haddon</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Forton</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Freethorpe</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Gailey</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Gravesend</td>
<td>1</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Gravesend</td>
<td>2</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Gravesend</td>
<td>3</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Himley</td>
<td>1</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Himley</td>
<td>2</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Hognaston</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Holby</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Kingston And Madley</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Kirmington</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Knowbury</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Leek Wootton</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Lighthorne Heath</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Little Stretton</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Little Wenlock</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Lydbury North (Old)</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Malham</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Meltham</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Middleton (Shropshire)</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Middleton (Warwickshire)</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Naseby</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Needingworth</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Norton Lindsey</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Nun Monkton</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Oaklands Park</td>
<td>1</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Oaklands Park</td>
<td>2</td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Rugeley</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Saxby</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>HSSF System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southwick</td>
<td>2</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Southwick</td>
<td>3</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Stockley</td>
<td>1</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Stockley</td>
<td>2</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Stockley</td>
<td>3</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Thorpe Satchville</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Valleyfield</td>
<td>1</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Valleyfield</td>
<td>2</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Valleyfield</td>
<td>3</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Valleyfield</td>
<td>4</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Wentworth Castle</td>
<td>1</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Wentworth Castle</td>
<td>2</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Wentworth Castle</td>
<td>3</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Wentworth Castle</td>
<td>4</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>West Harwood</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Westow</td>
<td>1</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Westow</td>
<td>2</td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Wetwood</td>
<td></td>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Alabama</td>
<td>1</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Alabama</td>
<td>2</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Alabama</td>
<td>3</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Alabama</td>
<td>4</td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Degussa Corporation</td>
<td></td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Phillips High School</td>
<td></td>
<td>Alabama</td>
<td>United States</td>
</tr>
<tr>
<td>Pima County</td>
<td></td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Sahuarita</td>
<td></td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Tubac</td>
<td></td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Wickenburg</td>
<td></td>
<td>Arizona</td>
<td>United States</td>
</tr>
<tr>
<td>Clarendon</td>
<td></td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Dierks</td>
<td></td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Foreman</td>
<td></td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Gould</td>
<td></td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Gurndon</td>
<td></td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Judsonia</td>
<td></td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Lewisville</td>
<td></td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>North Crossett</td>
<td></td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Ola</td>
<td></td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Pocahontas</td>
<td></td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Rector</td>
<td>1</td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Rector</td>
<td>2</td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Smackover</td>
<td></td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Tuckema</td>
<td></td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Waldo</td>
<td></td>
<td>Arkansas</td>
<td>United States</td>
</tr>
<tr>
<td>Hopland</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Oxnard</td>
<td>Train 1</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Oxnard</td>
<td>Train 2</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Sacramento</td>
<td>11</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Santee</td>
<td>Gravel</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Santee</td>
<td>Cattail</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Santee</td>
<td>Bulrush</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Santee</td>
<td>Phragmites</td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Calahan</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2009 by Taylor & Francis Group, LLC
TABLE A.2 (CONTINUED)
Horizontal Subsurface Flow Wetlands

<table>
<thead>
<tr>
<th>HSSF System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highland Acres W&S District</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td>Las Animas</td>
<td></td>
<td>Colorado</td>
<td>United States</td>
</tr>
<tr>
<td>Fish Royer</td>
<td></td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>Anamosa</td>
<td></td>
<td>Iowa</td>
<td>United States</td>
</tr>
<tr>
<td>Beeory</td>
<td></td>
<td>Kansas</td>
<td>United States</td>
</tr>
<tr>
<td>Brown</td>
<td></td>
<td>Kansas</td>
<td>United States</td>
</tr>
<tr>
<td>Carlson</td>
<td></td>
<td>Kansas</td>
<td>United States</td>
</tr>
<tr>
<td>Manhattan PFL</td>
<td>PFL</td>
<td>Kansas</td>
<td>United States</td>
</tr>
<tr>
<td>Manhattan PCL</td>
<td>PCL</td>
<td>Kansas</td>
<td>United States</td>
</tr>
<tr>
<td>Manhattan PCR</td>
<td>PCR</td>
<td>Kansas</td>
<td>United States</td>
</tr>
<tr>
<td>Manhattan UFL</td>
<td>UFL</td>
<td>Kansas</td>
<td>United States</td>
</tr>
<tr>
<td>Manhattan UCL</td>
<td>UCL</td>
<td>Kansas</td>
<td>United States</td>
</tr>
<tr>
<td>Manhattan UCR</td>
<td>UCR</td>
<td>Kansas</td>
<td>United States</td>
</tr>
<tr>
<td>Anderson</td>
<td></td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Anderson County</td>
<td></td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Benton</td>
<td>3</td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Greenville</td>
<td>1</td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Greenville</td>
<td>2</td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Greenville</td>
<td>3</td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Greenville</td>
<td>4</td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Greenville</td>
<td>5</td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Hardin</td>
<td>1</td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Hardin</td>
<td>2</td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Paris</td>
<td></td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Scott</td>
<td></td>
<td>Kentucky</td>
<td>United States</td>
</tr>
<tr>
<td>Denham Springs</td>
<td>1</td>
<td>Louisiana</td>
<td>United States</td>
</tr>
<tr>
<td>Denham Springs</td>
<td>2</td>
<td>Louisiana</td>
<td>United States</td>
</tr>
<tr>
<td>Denham Springs</td>
<td>3</td>
<td>Louisiana</td>
<td>United States</td>
</tr>
<tr>
<td>Greenleaves Subdivision</td>
<td></td>
<td>Louisiana</td>
<td>United States</td>
</tr>
<tr>
<td>Haughton</td>
<td></td>
<td>Louisiana</td>
<td>United States</td>
</tr>
<tr>
<td>Mandeville</td>
<td></td>
<td>Louisiana</td>
<td>United States</td>
</tr>
<tr>
<td>Keyser’s Ridge</td>
<td></td>
<td>Maryland</td>
<td>United States</td>
</tr>
<tr>
<td>Mayo Peninsula</td>
<td></td>
<td>Maryland</td>
<td>United States</td>
</tr>
<tr>
<td>Cambridge-Isanti School District</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Carlson Residence</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Cedar Mills</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Chisholm</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Clearwater Forest</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Darfur</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Delft</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Eichten Cheese</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Fields of St. Croix - North</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Grand Lake</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Happiness Resort</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Jackson Meadow</td>
<td>South</td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Jackson Meadow</td>
<td>North</td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Lake Elmo</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Lakes of Fairhaven</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Lake Washington</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Lutsen East Flank</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Lutsen Sea Villas</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Morton Farm Preserve</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Mulberry Meadows</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
</tbody>
</table>

(Continued)
TABLE A.2 (CONTINUED)
Horizontal Subsurface Flow Wetlands

<table>
<thead>
<tr>
<th>HSSF System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAWE Office</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>NERCC</td>
<td>1</td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>NERCC</td>
<td>2</td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>The Ponds</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>The Preserve</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Northern Tier High Adventure Base</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Opole</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Prairie Hamlet</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Prinsburg</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Spring Hill</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>St. George</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Super America - Ham Lake</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Super America - Wyoming</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Tamarack</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Tamarack Farm Estates</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Wildflower Shores</td>
<td></td>
<td>Minnesota</td>
<td>United States</td>
</tr>
<tr>
<td>Columbus</td>
<td></td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Utica, North</td>
<td>1</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Utica, North</td>
<td>2</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Utica, South</td>
<td>1</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Utica, South</td>
<td>2</td>
<td>Mississippi</td>
<td>United States</td>
</tr>
<tr>
<td>Lake Capri</td>
<td>Vegetated</td>
<td>Missouri</td>
<td>United States</td>
</tr>
<tr>
<td>Lake Capri</td>
<td>Unvegetated</td>
<td>Missouri</td>
<td>United States</td>
</tr>
<tr>
<td>Firethorn</td>
<td></td>
<td>Nebraska</td>
<td>United States</td>
</tr>
<tr>
<td>Lincoln</td>
<td></td>
<td>Nebraska</td>
<td>United States</td>
</tr>
<tr>
<td>Albuquerque</td>
<td></td>
<td>New Mexico</td>
<td>United States</td>
</tr>
<tr>
<td>Minoa</td>
<td>1</td>
<td>New York</td>
<td>United States</td>
</tr>
<tr>
<td>Minoa</td>
<td>2</td>
<td>New York</td>
<td>United States</td>
</tr>
<tr>
<td>Minoa</td>
<td>3</td>
<td>New York</td>
<td>United States</td>
</tr>
<tr>
<td>Craven County</td>
<td></td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>North Carolina Ranger Station</td>
<td></td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>North Carolina Residence</td>
<td>1</td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>North Carolina Residence</td>
<td>2</td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>Ohio Residences</td>
<td>13</td>
<td>Ohio</td>
<td>United States</td>
</tr>
<tr>
<td>Ohio Residences</td>
<td>14</td>
<td>Ohio</td>
<td>United States</td>
</tr>
<tr>
<td>Ohio Residences</td>
<td>15</td>
<td>Ohio</td>
<td>United States</td>
</tr>
<tr>
<td>Ohio Residences</td>
<td>16</td>
<td>Ohio</td>
<td>United States</td>
</tr>
<tr>
<td>Ohio Residences</td>
<td>17</td>
<td>Ohio</td>
<td>United States</td>
</tr>
<tr>
<td>Ohio Residences</td>
<td>19</td>
<td>Ohio</td>
<td>United States</td>
</tr>
<tr>
<td>Ohio Residences</td>
<td>20</td>
<td>Ohio</td>
<td>United States</td>
</tr>
<tr>
<td>Ohio Residences</td>
<td>21</td>
<td>Ohio</td>
<td>United States</td>
</tr>
<tr>
<td>Halsey</td>
<td></td>
<td>Oregon</td>
<td>United States</td>
</tr>
<tr>
<td>Iselin</td>
<td></td>
<td>Pennsylvania</td>
<td>United States</td>
</tr>
<tr>
<td>Baxter</td>
<td>A</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Baxter</td>
<td>B</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Baxter</td>
<td>C</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Baxter</td>
<td>D</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Baxter</td>
<td>E</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Baxter</td>
<td>F</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Baxter</td>
<td>G</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Baxter</td>
<td>H</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Baxter</td>
<td>I</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Baxter</td>
<td>J</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
</tbody>
</table>
TABLE A.2 (CONTINUED)
Horizontal Subsurface Flow Wetlands

<table>
<thead>
<tr>
<th>HSSF System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baxter</td>
<td>K</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Baxter</td>
<td>L</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Baxter</td>
<td>M</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Baxter</td>
<td>N</td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Kingston Power Plant</td>
<td></td>
<td>Tennessee</td>
<td>United States</td>
</tr>
<tr>
<td>Bryan</td>
<td></td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>College Station</td>
<td></td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Dessau Mobile Home Park</td>
<td></td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>D’Harris</td>
<td></td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Dublin</td>
<td></td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Houston</td>
<td></td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Johnson City 1</td>
<td>1</td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Johnson City 2</td>
<td>2</td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Stephenville</td>
<td></td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Tomball</td>
<td></td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Weslaco</td>
<td></td>
<td>Texas</td>
<td>United States</td>
</tr>
<tr>
<td>Kentland 1</td>
<td>1</td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Kentland 2</td>
<td>2</td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Kentland 3</td>
<td>3</td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Kentland CT</td>
<td>CT</td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Kentland WG</td>
<td>WG</td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Monterey</td>
<td></td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Monterrey</td>
<td></td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Powell 1</td>
<td>1</td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Powell 2</td>
<td>2</td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Powell 3</td>
<td>3</td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Powell CT</td>
<td>CT</td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Powell WG</td>
<td>WG</td>
<td>Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>Dungeness</td>
<td></td>
<td>Washington</td>
<td>United States</td>
</tr>
<tr>
<td>Morgantown</td>
<td></td>
<td>West Virginia</td>
<td>United States</td>
</tr>
<tr>
<td>St. Croix Chippewa</td>
<td></td>
<td>Wisconsin</td>
<td>United States</td>
</tr>
</tbody>
</table>

(Continued)

TABLE A.3
Vertical Flow Wetlands

<table>
<thead>
<tr>
<th>VF System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ernsthofen</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Gleisdorf (Binder)</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Hollerberg-West</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Horbach</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Lappach (Kurzmann)</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Wolfern</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>YX</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Strengberg</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Birkfeld (Hoeller)</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Lasnitzhöhe (Laposa)</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Lang Fr.</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Jennersdorf (Doppelhofer)</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Pischelsdorf (Hart)</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Hart b. Graz (Koberg)</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
<tr>
<td>Zeutschach (Hofer)</td>
<td></td>
<td></td>
<td>Austria</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>VF System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bokrijk</td>
<td></td>
<td>Belgium</td>
<td>Belgium</td>
</tr>
<tr>
<td>PDLT</td>
<td></td>
<td>Belgium</td>
<td>Belgium</td>
</tr>
<tr>
<td>PIME</td>
<td></td>
<td>Belgium</td>
<td>Belgium</td>
</tr>
<tr>
<td>Sint-Niklass Heimolen</td>
<td></td>
<td>Belgium</td>
<td>Belgium</td>
</tr>
<tr>
<td>System A</td>
<td></td>
<td>Belgium</td>
<td>Belgium</td>
</tr>
<tr>
<td>System B</td>
<td></td>
<td>Belgium</td>
<td>Belgium</td>
</tr>
<tr>
<td>System C</td>
<td></td>
<td>Belgium</td>
<td>Belgium</td>
</tr>
<tr>
<td>System D</td>
<td></td>
<td>Belgium</td>
<td>Belgium</td>
</tr>
<tr>
<td>System E</td>
<td></td>
<td>Belgium</td>
<td>Belgium</td>
</tr>
<tr>
<td>Zemst-Larbeek</td>
<td></td>
<td>Belgium</td>
<td>Belgium</td>
</tr>
<tr>
<td>Blenterin</td>
<td>Ontario</td>
<td>Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>Vinland</td>
<td>Ontario</td>
<td>Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>Ansaster</td>
<td></td>
<td>Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>Saint Ann’s</td>
<td></td>
<td>Canada</td>
<td>Canada</td>
</tr>
<tr>
<td>Saint Andrés</td>
<td></td>
<td>Colombia</td>
<td>Colombia</td>
</tr>
<tr>
<td>Bijar Cres</td>
<td></td>
<td>Croatia</td>
<td>Croatia</td>
</tr>
<tr>
<td>Aarhus</td>
<td></td>
<td>Denmark</td>
<td>Denmark</td>
</tr>
<tr>
<td>Paistu</td>
<td></td>
<td>Estonia</td>
<td>Estonia</td>
</tr>
<tr>
<td>Roussillon</td>
<td></td>
<td>France</td>
<td>France</td>
</tr>
<tr>
<td>Saint Thomé</td>
<td></td>
<td>France</td>
<td>France</td>
</tr>
<tr>
<td>Langenreichenbach</td>
<td></td>
<td>Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Leipzig</td>
<td></td>
<td>Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Casolara Acqua Chiara</td>
<td></td>
<td>Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Cerbaia</td>
<td></td>
<td>Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Cerbaia</td>
<td></td>
<td>Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Contrada Petrosa</td>
<td></td>
<td>Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Firenze, Hotel RC</td>
<td></td>
<td>Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Florence</td>
<td></td>
<td>Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Gorizia</td>
<td></td>
<td>Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>La Collina</td>
<td></td>
<td>Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Dhulikhel</td>
<td></td>
<td>Nepal</td>
<td>Nepal</td>
</tr>
<tr>
<td>Adema</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Appelscha</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Boxtel</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Deurna</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Groot Ehrental</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Hamming</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Heuslum</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Hobbitstee</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Klein Profijt</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Koudum</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Lauersoog</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Lemmer</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Nijkerk</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Nooyen</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Ommen</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Oosthem</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Oud-Beijerland</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Oudega</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Spijkerman</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>ter Veer</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Terpstra</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
<tr>
<td>van Oirschot</td>
<td></td>
<td>Netherlands</td>
<td>Netherlands</td>
</tr>
</tbody>
</table>
TABLE A.3
Vertical Flow Wetlands

<table>
<thead>
<tr>
<th>VF System Name</th>
<th>Identifier</th>
<th>State/Province</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>van Ravenhorst</td>
<td></td>
<td></td>
<td>Netherlands</td>
</tr>
<tr>
<td>Veening</td>
<td></td>
<td></td>
<td>Netherlands</td>
</tr>
<tr>
<td>Vrieleng</td>
<td></td>
<td></td>
<td>Netherlands</td>
</tr>
<tr>
<td>Wapserveen</td>
<td></td>
<td></td>
<td>Netherlands</td>
</tr>
<tr>
<td>Fagernes</td>
<td></td>
<td></td>
<td>Norway</td>
</tr>
<tr>
<td>Haugstein</td>
<td></td>
<td></td>
<td>Norway</td>
</tr>
<tr>
<td>Jolle</td>
<td></td>
<td></td>
<td>Norway</td>
</tr>
<tr>
<td>Østergårde</td>
<td></td>
<td></td>
<td>Norway</td>
</tr>
<tr>
<td>Tveter I</td>
<td></td>
<td></td>
<td>Norway</td>
</tr>
<tr>
<td>Carion de los Céspedes</td>
<td></td>
<td></td>
<td>Spain</td>
</tr>
<tr>
<td>Mojacar</td>
<td></td>
<td></td>
<td>Spain</td>
</tr>
<tr>
<td>Castleroe Gravel bed</td>
<td></td>
<td>Gravel bed</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Castleroe Peat bed</td>
<td></td>
<td>Peat bed</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Drointon 1</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Drointon 2</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Gailey</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Medmenham 1</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Medmenham 2</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Oaklands Park 1</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Oaklands Park 2</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Rugeley 1</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Rugeley 2</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Wills Barn</td>
<td></td>
<td></td>
<td>United Kingdom</td>
</tr>
<tr>
<td>LaGrange County</td>
<td></td>
<td>Indiana</td>
<td>United States</td>
</tr>
<tr>
<td>North Carolina School</td>
<td></td>
<td>North Carolina</td>
<td>United States</td>
</tr>
<tr>
<td>Laguna Niguel</td>
<td></td>
<td>California</td>
<td>United States</td>
</tr>
<tr>
<td>Salem Bed 1</td>
<td></td>
<td>Oregon</td>
<td>United States</td>
</tr>
<tr>
<td>Salem Bed 2</td>
<td></td>
<td>Oregon</td>
<td>United States</td>
</tr>
<tr>
<td>Saginaw</td>
<td></td>
<td>Michigan</td>
<td>United States</td>
</tr>
<tr>
<td>Connell Pilot</td>
<td></td>
<td>Washington</td>
<td>United States</td>
</tr>
<tr>
<td>Connell Full scale</td>
<td></td>
<td>Washington</td>
<td>United States</td>
</tr>
</tbody>
</table>
Appendix B: Tracer Testing and Flow-Pattern Modeling

The large majority of information on the contaminant removal capabilities of treatment wetlands has been in the form of a relatively continuous time series of inlet and outlet concentrations, under conditions of known flow. There is a second realm of data acquisition and analysis that revolves around the spike addition of substances to the wetland. A wide variety of substances have been used to trace the progress of water through treatment wetlands. These have included the salt ions lithium, bromide, chloride, iodide, and fluoride; the fluorescent dyes rhodamine RWT and B fluorescein; and tritiated water. Most often, these are pulse injected into the wetland inlet, and the concentration response is determined at the wetland outlet.

The purpose of hydraulic tracer testing is to determine the distribution of detention times for the wetland. Detention time distributions (DTDs) for treatment wetlands have been extensively investigated at many wetland sites, and thus there exist numerous examples of the functional forms that are characteristic of wetlands. Single-shot tracer injection with effluent concentration monitoring is usually employed (Kadlec and Knight, 1996). Because the tracer does not (theoretically) interact with wetland soils or biota, it serves as a marker of the water with which it enters. Typical distributions are bell shaped, with some tracer exiting at short times, and some exiting at longer times.

This evidence is conclusive: imperfect flow patterns pervade the universe of treatment wetlands. It is necessary to account for this in design, and it is accomplished via nonideal flow models. In turn, the understanding and development of nonideal flow models derive principally from tracer testing. The purpose of this appendix is to expand on the practicalities, pitfalls, and results of wetland tracer testing.

One of the principal results derived from tracer testing is presented in Chapter 2—the volumetric efficiency of the wetland, i.e., how much of the nominal wetland water volume is involved in its flow. It is the ratio of tracer detention time to nominal detention time:

\[e_V = \frac{\tau_d}{\tau_n} \]

where

- \(\tau_d \): tracer peak time
- \(\tau_n \): nominal hydraulic detention time

The DTD efficiency is an approximate interpolator between the performance of one TIS, as measured by \(F_{TIS} \), and PF performance, as measured by \(F_{PF} \):

\[F = \frac{C - C^*}{C_i - C^*} = e_{DTD} \cdot F_{PF} + (1 - e_{DTD}) \cdot F_{TIS} \]

For plug flow,

\[F_{PF} = \frac{C_{PF} - C^*}{C_i - C^*} = \exp \left(-\frac{k_A \tau}{h} \right) \]

For NTIS,

\[F_{TIS} = \frac{C_{TIS} - C^*}{C_i - C^*} = \left(1 + \frac{k_A \tau}{hN} \right)^{-N} \]

where

- \(C \): outlet concentration, mg/m³
- \(C_i \): average inlet concentration, mg/m³
- \(C^* \): background concentration, mg/m³
- \(F \): fraction remaining to background
- \(k_A \): intrinsic reaction rate constant, m/d
- \(N \): number of tanks
- \(\tau \): detention time, d

The root-mean-square degree of fit of the approximation for Equation B.2 ranges 1–6% for \(1 \leq (k_A \tau/h) \leq 3 \).

Persson et al. (1999) go on to suggest a combined measure, the hydraulic efficiency (\(\lambda \)), that reflects the excluded volume and the mixing pattern of constructed wetlands. This measure is defined as the product of the volumetric efficiency and the DTD efficiency:

\[\lambda = e_V \cdot e_{DTD} \]

This is useful for ranking wetlands for their combined efficiency, but is not directly useful for parameter estimation. The two pieces are needed separately for quantitative estimates of performance. For a TIS model, the combined hydraulic efficiency is given by a very simple result:

\[\lambda = \frac{\tau_p}{\tau_n} \]

where

- \(\tau_p \): tracer peak time
- \(\tau_n \): nominal hydraulic detention time

© 2009 by Taylor & Francis Group, LLC
Persson et al. (1999) have explored both real wetland systems and, via calibrated two-dimensional dynamic modeling, simulated situations. They found $0.11 < \lambda < 0.90$. The same parameter has been evaluated for other hypothetical wetland situations (Jenkins and Greenway, 2005).

IDEAL FLOW REACTORS

Wetlands can be thought of as a cross section between two theoretically ideal reactors: the plug flow reactor and continuously-stirred tank reactor (CSTR). The plug flow (PF) reactor represents a situation where there is no internal mixing within the reactor, and water parcels move in unison from the inlet to the outlet. The CSTR represents the ideal of perfect mixing: water entering the system is instantaneously and uniformly distributed throughout the reactor.

NOMINAL HYDRAULIC DETENTION TIME

PF and CSTR reactors behave very differently in response to the input of a conservative tracer. To discuss tracer behavior, it is useful to review the concepts of hydraulic detention time from Chapter 2. For a free water surface (FWS) wetland, the nominal wetland water volume is defined as the volume enclosed by the upper water surface, and the bottom and sides of the impoundment.

$$\tau_n = \frac{V_o}{Q} = \frac{(LWh)_{nn}}{Q}$$ \hspace{1cm} (B.7)

where

- $\tau_n =$ nominal hydraulic detention time, days
- $L =$ wetland length, m
- $W =$ wetland width, m
- $h =$ water depth, m
- $(LWh)_n =$ nominal wetland volume, m3
- $Q =$ flow rate, m3/d

For a subsurface flow (SSF) wetland, it is that enclosed volume multiplied by the porosity of the clean (unclogged) bed media.

$$\tau_n = \frac{V_o}{Q} = \frac{\varepsilon(LWh)_n}{Q}$$ \hspace{1cm} (B.8)

where

- $\varepsilon =$ bed media porosity, dimensionless

Dimensionless time, θ, can be used instead of nominal hydraulic detention time, τ_n, when comparing tracer response curves:

$$\theta = \frac{t}{\tau_n}$$ \hspace{1cm} (B.9)

where

- $t =$ elapsed time in days

TRACER RESPONSE IN PF AND CSTR REACTORS

A spike input of tracer entering a PF reactor will move through the system with zero mixing. As a result, the tracer spike will exit the reactor unchanged at $\tau_n (\theta = 1)$. In a CSTR reactor, the tracer impulse is instantaneously and uniformly distributed among the tank contents (Levenspiel, 1972). As flow continues to enter the tank, tracer-contaminated water is displaced, resulting in a declining tracer output curve with a long tail. Figure B.1 displays both types of ideal reactors and their associated tracer response curves.

REAL-WORLD TRACER MOVEMENT

It is well documented that the flow patterns through treatment wetland systems are nonideal and do not conform to either the PF or CSTR ideals (see Tables 6.1 and 6.2, Chapter 6).

In SSF wetland systems, dispersion and mixing occurs within the bed as water flows between the gravel particles or sand grains. In SSF wetlands, roots may create preferential flow paths near the bottom of the wetland cell (Liehr et al., 2000). In FWS wetlands, water near the surface is less subject to bottom drag and moves faster than the flow that is deeper in the water column. Water must detour around plant bases, which act as stagnant pockets that exchange water with adjacent flow channels by diffusion. Open water zones are subject to wind-driven mixing. The bottom topography may form deeper pathways, further contributing to short circuiting.

These combined phenomena produce a distribution of transit times for water parcels. The combined effect of these processes can be demonstrated by passing an inert tracer through the wetland. An impulse of the tracer, added across the flow width, moves with water through the wetland as a spreading cloud. Many treatment wetlands have been tracer tested, and all exhibit a significant departure from plug flow (Kadlec, 1994a; Stairs and Moore, 1994; King et al., 1997). Figure B.2 displays the movement of a bromide tracer impulse through an aerated horizontal subsurface flow (HSSF) wetland, as inferred from a 4×4 lateral and longitudinal array of sampling ports (Nivala, 2005). Similar two-dimensional profiles are shown in Figure 6.14 in Chapter 6.

Real-world flow patterns, such as the ones illustrated in Figure B.2, can be approximated using a variety of different flow models. The simplest, and most widely used, is to assume that the wetland can be represented as a series of CSTRs. This model, the TIS model, is addressed in the next section of this appendix.

THE TANKS-IN-SERIES FLOW MODEL

The TIS flow model bridges the gap between the idealized extremes of the PF and CSTR reactor types. In the TIS model, the wetland is represented by a number of CSTRs in series, as shown in Figure 6.19 in Chapter 6. The flow enters
the first CSTR, is mixed, and then flows into the next CSTR. The number of tanks in the series, \(N \), is an important parameter in the description of the movement of both reactive and nonreactive substances.

When \(N = 1 \), this TIS model simplifies to the CSTR ideal reactor. As the number of CSTRs increases, the flow comes closer to approximating plug flow (Crites and Tchobanoglous, 1998), as shown in Figure B.3. If there are an infinite number of tanks in series, the internal mixing goes to zero, and the TIS model simplifies to the ideal PF reactor. Thus, the tracer response curve generated by the TIS model is a function of \(N \).

It is important to note that \(N \) is a mathematical fitting parameter. It does not represent the physical configuration of the wetland. A treatment wetland with three cells will not have \(N = 3 \).

TRACER VERSUS NOMINAL HYDRAULIC DETENTION TIMES

The number of tanks \((N)\) that best represents the hydraulic characteristics of the wetland is not known a priori. If an impulse tracer test is conducted, the wetland will generate a tracer response curve at the outlet (or other monitoring location), similar to the ones shown in Figures 6.15–6.17, Chapter 6.

The tracer detention time, \(\tau \), can be calculated from the tracer output data (Equation 6.36, Chapter 6):

\[
\tau = \frac{1}{M_o} \int_0^\infty tQCdt
\]

with where
- \(C(t) = \) tracer exit concentration, g/m³ = mg/L
- \(M_o = \) mass of tracer in outflow, g
- \(\tau = \) tracer detention time, d
- \(t = \) time, d
- \(Q = \) average flow rate, m³/d

The tracer detention time, \(\tau \), is often less than the nominal detention time \(\tau_n \). This is because not all the wetland volume is involved in the flow path, as was assumed in the calculation of \(\tau_n \). As discussed in Chapter 2, the volumetric efficiency, \(e_v \), is an important parameter relating \(\tau \) and \(\tau_n \). For FWS wetlands, \(e_v \) can be defined as follows (Equation 2.5):

\[
e_v = \frac{V_{active}}{(LW_h)n} = e \eta h
\]

with where
- \(e_v = \) wetland volumetric efficiency, dimensionless
- \(V_{active} = \) active wetland volume, m³
- \(e = \) fraction of volume occupied by water, dimensionless
- \(\eta = \) gross areal efficiency, dimensionless
- \(h = \) water depth, m
- \(h_n = \) nominal water depth, m
- \(LW_h = \) nominal wetland volume, m³

It is then clear that

\[
\tau = e_v \tau_n
\]
Table B.1 lists volumetric efficiency results from tracer testing efforts at the Orlando Easterly treatment wetland (Martinez and Wise, 2003b), where 15 of 17 FWS wetland cells were tracer tested.

THE DETENTION TIME DISTRIBUTION

Calculation of the tracer detention time, \(\tau \), tells us a useful characteristic of the treatment wetland, namely, the average time water spends in the wetland. However, observation of tracer response curves, such as the ones shown in Figures 6.15–6.17, Chapter 6, clearly indicates that water is moving at different speeds within the wetland. Thus, the tracer response curve illustrates the entire range of detention times observed in the wetland. This range of detention times is termed as the *detention time distribution*, or DTD.

The DTD can be defined as

\[
f(t) \Delta t = \text{fraction of incoming water that stays in the wetland for a length of time between } t \text{ and } \Delta t
\]

where

- \(f = \text{DTD function, d}^{-1} \)
- \(t = \text{time, d} \)
- \(\Delta t = \text{time increment, d} \)

The exit tracer concentration is related to the DTD function. For an impulse tracer entering a system, the concentration curve, \(C(t) \), can be related to the DTD function, \(f(t) \), by

\[
f(t) = \frac{QC(t)}{\int_0^\infty QC(t)dt}
\]

where

- \(C(t) = \text{exit tracer concentration, g/m}^3 = \text{mg/L} \)
- \(Q = \text{water flow rate, m}^3/\text{d} \)

The numerator is the mass flow of the tracer in the wetland effluent at any time \(t \) after the time of the impulse addition. The denominator is the sum of all the tracer collected and thus should equal the total mass of tracer injected. Equation B.12 represents the observed DTD function.

If flow rate is constant, \(Q \) may be deleted from the numerator and denominator, and Equation B.12 simplifies to

\[
f(t) = \frac{C(t)}{\int_0^\infty C(t)dt}
\]

The tracer concentration can be measured at interior wetland points as well as at the outlet. Equation B.12 or B.13 may then be used to determine the distribution of transit times to that internal point. In this broader sense, the DTD becomes a function of internal position, \(f(x,t) \).

The TIS model described in Figure B.3 is defined as a number \((N) \) of equally sized, perfectly mixed tanks arranged in series. The number of tanks can be any integral number between 1 and \(\infty \). The response of this series of tanks is
TABLE B.1
Results of Cell-Wise Tracer Testing at the Orlando Easterly Wetlands

<table>
<thead>
<tr>
<th>Cell</th>
<th>Cell Area (ha)</th>
<th>Mass Recovery (%)</th>
<th>Actual Residence Time (days)</th>
<th>Nominal Residence Time (days)</th>
<th>Cell Volumetric Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>109</td>
<td>1.38</td>
<td>4.53</td>
<td>0.30</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>123</td>
<td>5.67</td>
<td>6.47</td>
<td>0.88</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>91</td>
<td>1.34</td>
<td>2.57</td>
<td>0.52</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>95</td>
<td>2.28</td>
<td>8.97</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>87</td>
<td>0.44</td>
<td>4.02</td>
<td>0.11</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>84</td>
<td>1.62</td>
<td>2.29</td>
<td>0.71</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>97</td>
<td>2.63</td>
<td>13.00</td>
<td>0.20</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>112</td>
<td>1.24</td>
<td>2.95</td>
<td>0.42</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>101</td>
<td>2.02</td>
<td>6.74</td>
<td>0.30</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>111</td>
<td>1.96</td>
<td>3.44</td>
<td>0.57</td>
</tr>
<tr>
<td>11</td>
<td>23</td>
<td>105</td>
<td>29.5</td>
<td>60.5</td>
<td>0.49</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>105</td>
<td>8.12</td>
<td>11.7</td>
<td>0.69</td>
</tr>
<tr>
<td>13</td>
<td>52</td>
<td>75</td>
<td>8.39</td>
<td>20.8</td>
<td>0.40</td>
</tr>
<tr>
<td>14</td>
<td>47</td>
<td>92</td>
<td>5.62</td>
<td>12.3</td>
<td>0.46</td>
</tr>
<tr>
<td>15</td>
<td>54</td>
<td>94</td>
<td>9.19</td>
<td>12.5</td>
<td>0.74</td>
</tr>
</tbody>
</table>

calculated from the dynamic tracer mass balance equations for the tanks:

\[V_j \frac{dC_j}{dt} = Q(C_{j+1} - C_j) \quad j = 1, 2, \ldots, N \quad (B.14) \]

where
- \(C_j \) = tracer concentration in unit \(j \), mg/L = g/m^3
- \(t \) = time, d
- \(V_j \) = volume of unit \(j \), m^3

Equation B.14 is easily rearranged:

\[\tau_j \frac{dC_j}{dt} + C_j = C_{j+1} \quad j = 1, 2, \ldots, N \quad (B.15) \]

where
- \(\tau_j \) = tracer detention time in unit \(j \), d

Because all the units are of equal volume, the tracer detention time of the entire system is \(\tau = N\tau_j \). If a unit impulse of concentration is fed to the series of tanks as a feed concentration condition, the resulting effluent concentration from the \(Nth \) tank is the tracer concentration response according to the model. Thus, Levenspiel (1972) demonstrates that the DTD curve for the TIS model can be represented by

\[f(t) = \frac{N^N t^{N-1}}{\tau^N(N-1)!} \exp\left(-\frac{Nt}{\tau}\right) \quad (B.16) \]

Moment Analysis

The moments of the DTD define the key parameters that characterize the wetland, the two most important being the actual detention time and spreading of the concentration pulse due to mixing (variance of the pulse). The \(nth \) moment about the origin is defined by

\[M_n = \int_0^\infty t^n f(t)dt \quad (B.17) \]

The zeroth moment represents the definition of the fractional character of the DTD function. Because the term \(f(t)\Delta t \) represents the fraction of tracer that spends between time \(t \) and \(t + \Delta t \) in the system, the sum of these fractions is unity:

\[\int_0^\infty f(t)dt = 1 \quad (B.18) \]

The first absolute moment is the tracer detention time \(\tau \). This value defines the centroid of the exit tracer concentration distribution:

\[\int_0^\infty t f(t)dt = \tau \quad (B.19) \]

It is sometimes useful to work with a dimensionless time variable, defined as the actual time divided by the tracer detention time:

\[\theta = \frac{t}{\tau} \quad (B.20) \]

A second parameter that can be determined directly from the residence time distribution is the variance \(\sigma^2 \), which characterizes the spread of the tracer response curve about the mean of the distribution, which is \(\tau \). This is the second central moment about the mean:

\[\int_0^\infty (t - \tau)^2 f(t)dt = \sigma^2 \quad (B.21) \]

where
- \(\sigma^2 = DTD \) variance, d^2

The variance of the DTD is created by the mixing of water during passage, or, equivalently, by a distribution of the velocities of passage. This can be lateral, longitudinal, or vertical mixing. This measure of dispersive processes may be rendered dimensionless by dividing by the square of the tracer detention time:

\[\sigma^2_0 = \frac{\sigma^2}{\tau^2} \quad (B.22) \]

The new parameter is \(\sigma^2_0 \), the dimensionless variance of the tracer pulse.

For the TIS model, it is possible to define simple relations between the parameters of the distribution and these moments. For instance, the TIS conceptual model (which produces a gamma distribution) has a dimensionless variance, given by

\[\sigma^2_0 = \frac{\tau - \tau_0}{\tau} \quad (B.23) \]

\[\sigma^2_0 = \frac{1}{N} \quad (B.24) \]

Gamma Distribution Fitting

Virtually the entire early literature on tracer testing of wetlands and ponds utilized (archaic) parameter estimation methods that reflected the computational tools available when they were developed around 35 years ago. The most common method involves computation of the first and second moments of the experimental outlet concentration distribution (Equations B.19 and B.21) via numerical integration.
TABLE B.2
Sample Calculations for Workup of a Tracer Test

<table>
<thead>
<tr>
<th>Elapsed Time (days)</th>
<th>Flow (m³/d)</th>
<th>Raw Concentration (µg/L)</th>
<th>Adjusted Concentration (µg/L)</th>
<th>QCΔt (kg)</th>
<th>Data DTD (d⁻¹)</th>
<th>tQCΔt</th>
<th>(t-t₀)² tQΔt</th>
<th>Gamma DTD (d⁻¹)</th>
<th>Pred. Conc. (µg/L)</th>
<th>Gamma DTD (1/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>275,558</td>
<td>9</td>
<td>0</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>9</td>
<td>0.000</td>
</tr>
<tr>
<td>0.9</td>
<td>275,558</td>
<td>9</td>
<td>0</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>9</td>
<td>0.000</td>
</tr>
<tr>
<td>1.2</td>
<td>284,672</td>
<td>8</td>
<td>−1</td>
<td>0.000</td>
<td>0</td>
<td>−6</td>
<td>0.006</td>
<td>9</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>284,672</td>
<td>9</td>
<td>0</td>
<td>0.000</td>
<td>0</td>
<td>−3</td>
<td>0.009</td>
<td>9</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>278,499</td>
<td>44</td>
<td>35</td>
<td>0.013</td>
<td>12</td>
<td>288</td>
<td>0.038</td>
<td>91</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>263,747</td>
<td>109</td>
<td>100</td>
<td>0.034</td>
<td>25</td>
<td>471</td>
<td>0.041</td>
<td>103</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>263,747</td>
<td>100</td>
<td>91</td>
<td>0.031</td>
<td>36</td>
<td>620</td>
<td>0.044</td>
<td>113</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>263,747</td>
<td>191</td>
<td>182</td>
<td>0.062</td>
<td>57</td>
<td>808</td>
<td>0.047</td>
<td>129</td>
<td>0.044</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>32.6</td>
<td>223,775</td>
<td>20</td>
<td>11</td>
<td>0.003</td>
<td>161</td>
<td>1,776</td>
<td>0.005</td>
<td>35</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>35.6</td>
<td>143,877</td>
<td>14</td>
<td>5</td>
<td>0.001</td>
<td>161</td>
<td>1,998</td>
<td>0.004</td>
<td>29</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>37.6</td>
<td>260,816</td>
<td>13</td>
<td>4</td>
<td>0.001</td>
<td>65</td>
<td>1,008</td>
<td>0.002</td>
<td>27</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>39.6</td>
<td>298,678</td>
<td>16</td>
<td>7</td>
<td>0.003</td>
<td>124</td>
<td>2,144</td>
<td>0.002</td>
<td>30</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>42.6</td>
<td>596,050</td>
<td>16</td>
<td>7</td>
<td>0.005</td>
<td>396</td>
<td>7,838</td>
<td>0.001</td>
<td>16</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>44.6</td>
<td>507,213</td>
<td>14</td>
<td>5</td>
<td>0.003</td>
<td>280</td>
<td>5,991</td>
<td>0.001</td>
<td>13</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>46.6</td>
<td>234,219</td>
<td>14</td>
<td>5</td>
<td>0.001</td>
<td>160</td>
<td>3,696</td>
<td>0.001</td>
<td>11</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Sum or average</td>
<td>276,069</td>
<td>769</td>
<td>9,953</td>
<td>46,990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2009 by Taylor & Francis Group, LLC
A serious failing of the moment method of parameter estimation is that it emphasizes the "tail" of the response much more than the central portion—i.e., the peak area. Minor concentration anomalies on the tail of the concentration response curve may yield spurious parameter values. Often, a better procedure is to utilize a robust parameter determination routine, such as a search to minimize the sum of the squared errors between the selected DTD function and the data.

From Figure B.3, it is easy to see that the shape of the DTD is quite sensitive to changes in \(N \) when \(N \) is small. Note the change in magnitude and shape as the number of tanks increases from the ideal CSTR \((N = 1) \) to 2 TIS and from 2 to 6 TIS. Because most wetland systems operate as a few \((3–8) \) TIS, it is advantageous to be able to change \(N \) from a discrete integer variable to a continuous (noninteger) variable. This enables the modeler to utilize fractional values of \(N \), increasing the flexibility with which a dataset can be fit with a model. The gamma distribution \(f(t) \) is defined as:

\[
f(t) = \frac{N^\tau t^N e^{-N/t}}{\Gamma(N) \tau^N N!} \] (B.25)

The gamma function \(\Gamma(N) \) is defined by

\[
\Gamma(N) = \int_0^\infty x^{N-1} e^{-x} dx \] (B.26)

Equation B.25 represents a DTD function that may be fit to data. The GAMMADIST function is available in Microsoft Excel™ and returns values of \(f(t) \) for the time \(t \) and the parameters \(N \) and \(\tau \).

The SOLVER application in Microsoft Excel™ allows the modeler to simultaneously solve for the variables \(N \) and \(\tau \) that minimize the difference between the observed DTD (Equation B.13) and the predicted DTD (Equation B.25). Examples of results of this approach are shown in Figures 6.13 and 6.15, Chapter 6.

As an illustration of the potential problems of the old moment analysis procedure and the ability of the sum of the squared errors (SSQE) minimization, consider the data set for the lithium tracer test of Cell 2 of the Everglades Nutrient Removal Project, Florida, FWS wetland (Figure B.4). Computations are illustrated in Table B.2. SSQE fits the peak area of the response, whereas moment calculations fit the tail. Moment analysis produces a higher tracer detention time (12.95 days versus 11.17 days) and a lower number of TIS (2.74 versus 5.47). The moment parameters produce a poorly appearing "fitted" gamma curve. The bulk of the tracer, and hence the important part of the response, is contained in the peak zone. Accordingly, the SSQE minimization analysis of tracer data is recommended, rather than moment calculations.

Here, the goodness of fit is measured via the root mean square (RMS) error between model and data DTD values. The range \(0 < \theta < 4 \) is chosen to eliminate repeated zero errors associated with the tail of the distribution. The RMS error is divided by the peak height of the distribution to provide shape scaling. The RMS error for the moment fit in Figure B.4 is 24.5%, whereas the SSQE fit yields an RMS error of 9.2%.

TRACER TEST OBSERVATIONS

Treatment wetlands have been built to many different specifications and in many geometric layouts. Tracer tests for many have produced similar results, without evidence of pathological hydraulic behavior. Here, examples are given to illustrate commonly encountered features.

FWS WETLAND SYSTEMS

The results of an illustrative set of tracer test results for FWS wetlands is given in Table 6.1, Chapter 6. The average recovery for those 35 systems was 84%, the mean \(N \text{TIS} = 4.1 \), and the median \(N \text{TIS} = 3.6 \). More detailed information for a FWS system is informative.

The Tres Rios, Arizona, demonstration project conducted over 20 tracer tests of FWS wetlands used to polish municipal effluent. The Tres Rios Demonstration Constructed Wetland Project consisted of three discrete sites totaling 5.8 ha, of which 4.3 ha comprised two demonstration-scale free water surface (FWS) wetland facilities: a hayfield riparian site (H1 and H2) and a cobble site (C1 and C2). Wetland H2 was a 1.28-ha with a typical detention time of four days. Basin H2 had approximately 25% of its surface area as open-water deep zones, obtained using two large internal deep-zones with waterfowl islands. The primary vegetation consisted of two species of bulrush, *Scirpus validus* (soft-stem bulrush) and *Scirpus olneyi* (three-square bulrush). Tracer results have been discussed in Whitmer et al. (2000) and Keefe et al. (2004b).

The data from one of the bromide impulse tests are shown in Figure B.5, and the conditions for the test are given in Table B.3. The nominal detention time was 75 hours. A typical bell-shaped response is seen, with the first tracer appearing at the outlet at 16 hours. The tracer recovery was 88%, which indicates relatively conservative behavior. Three methods of analysis are illustrated: TIS from moments, TIS from least squares, and delayed (shifted) TIS from least squares. The RMS goodness of fit improves in that order (Table B.3). Depending on the fitting technique, the volumetric efficiency ranges 71–76%, indicating that most of the wetland water is involved in flow. The dimensionless variance is 0.237, corresponding to overall \(\text{TIS} = 4.2 \). However, if the shifted TIS DTD was used, the wetland behaved similar to a plug flow unit of 16 hours detention, combined with 38 hours detention in 2.8 TIS. The TIS moment fit of the DTD appears good only for the tail of the DTD.

The conversions for first-order, zero-background removal are given in Table B.3. In general, the plug flow approximation is not good, except for very low removals (\(Da = 1 \)).
Appendix B: Tracer Testing and Flow-Pattern Modeling

The results of an illustrative set of tracer test results for HSSF wetlands are given in Table 6.2, Chapter 6. The average recovery for the 37 systems was 92%, the mean $NTIS = 11.0$, and the median $NTIS = 8.3$. More detailed information for a HSSF system is informative.

The HSSF wetland system at Minoa, New York, consisted of three flow paths with two cells in series in each, totaling 0.67 ha. The average design flow was 600 m3/d, corresponding to a nominal detention time of three days. The substrate was 10–15 cm of 6-mm pea gravel on top of 75 cm of 20 mm gravel, and the cells were vegetated with *Phragmites australis* and *Scirpus validus*. Tracer results have been discussed in Marsteiner et al. (1996) and Marsteiner (1997). For the test example, the full flow was directed to cell 1.

The data from one of the bromide impulse tests are shown in Figure B.6, and the conditions for the test are given in Table B.3. The nominal detention time was 20.6 hours. A typical bell-shaped response is seen, with the first tracer appearing at the outlet at 9.6 hours. The tracer recovery was 98%, which indicates conservative behavior. Three methods of analysis are illustrated: TIS from moments, TIS from least squares, and delayed (shifted) TIS from least squares. The RMS goodness of fit improves in that order (Table B.3). Depending on the fitting technique, the volumetric efficiency ranges from 75–79%, indicating that most of the wetland water is involved in the flow. The dimensionless variance is 0.089, corresponding to overall TIS = 11.2. However, if the shifted TIS DTD was used, the wetland behaved similar to a plug flow unit of 9.6 hours’ detention, combined with 11 hours’ detention in 6.9 TIS. The TIS moment fit of the DTD appears good.

The conversions for first-order, zero-background removal are given in Table B.3. In general, the plug flow approximation is not good, except for very low removals ($Da = 1$).

HSSF WETLAND SYSTEMS

Tracer analysis of event-driven systems is complicated by two factors: the flow is not steady, and all the tracer may not be flushed out of the wetland by a single event. Despite these difficulties, it has been shown that the hydraulic flow patterns are similar under event-driven and continuous flow (Werner and...
It is instructive to examine the hypothetical response of a 4-TIS wetland to a tracer addition to an inflow that terminates before flushing the wetland. A nominal detention time of three days is selected, corresponding to a fixed inflow of 500 m3/d and a full-flow volume of 1,500 m3. During the tracer test, the wetland receives 500 m3/d for a period of three days.

TABLE B.3

Details of Tracer Tests for the Tres Rios Hayfield, Arizona (FWS), and Minoa, New York (HSSF), Examples

<table>
<thead>
<tr>
<th>Hayfield 2 FWS</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal detention time (h)</td>
<td>% Recovery</td>
<td>Dimensionless variance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74.6</td>
<td>88%</td>
<td>0.237</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Moment</th>
<th>Least Squares</th>
<th>Shifted Least Squares</th>
<th>Plug Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracer detention time (h)</td>
<td>56.4</td>
<td>53.0</td>
<td>53.5</td>
<td>—</td>
</tr>
<tr>
<td>Volumetric efficiency, %</td>
<td>76%</td>
<td>71%</td>
<td>72%</td>
<td>—</td>
</tr>
<tr>
<td>Plug flow fraction, %</td>
<td>0</td>
<td>0</td>
<td>30%</td>
<td>—</td>
</tr>
<tr>
<td>Number of TIS</td>
<td>4.2</td>
<td>6.2</td>
<td>2.8</td>
<td>—</td>
</tr>
<tr>
<td>RMS goodness of fit, %</td>
<td>15.9</td>
<td>6.6</td>
<td>3.4</td>
<td>—</td>
</tr>
<tr>
<td>Remaining @ Da = 1, %</td>
<td>40.8%</td>
<td>39.6%</td>
<td>39.7%</td>
<td>36.8%</td>
</tr>
<tr>
<td>Remaining @ Da = 3, %</td>
<td>10.4%</td>
<td>8.7%</td>
<td>8.5%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Remaining @ Da = 5, %</td>
<td>3.7%</td>
<td>2.6%</td>
<td>2.3%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minoa HSSF Cell 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal detention time (h)</td>
<td>% Recovery</td>
<td>Dimensionless variance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.4</td>
<td>98</td>
<td>0.089</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Moment</th>
<th>Least Squares</th>
<th>Shifted Least Squares</th>
<th>Plug Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracer detention time (h)</td>
<td>16.1</td>
<td>15.4</td>
<td>16.0</td>
<td>—</td>
</tr>
<tr>
<td>Volumetric efficiency, %</td>
<td>79%</td>
<td>75%</td>
<td>78%</td>
<td>—</td>
</tr>
<tr>
<td>Plug flow fraction, %</td>
<td>0</td>
<td>0</td>
<td>47%</td>
<td>—</td>
</tr>
<tr>
<td>Number of TIS</td>
<td>11.2</td>
<td>14.3</td>
<td>3.7</td>
<td>—</td>
</tr>
<tr>
<td>RMS Goodness of Fit, %</td>
<td>13.3</td>
<td>9.6</td>
<td>6.9</td>
<td>—</td>
</tr>
<tr>
<td>Remaining @ Da = 1, %</td>
<td>38.4%</td>
<td>38.0%</td>
<td>38.1%</td>
<td>36.8%</td>
</tr>
<tr>
<td>Remaining @ Da = 3, %</td>
<td>7.0%</td>
<td>6.6%</td>
<td>6.5%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Remaining @ Da = 5, %</td>
<td>1.6%</td>
<td>1.4%</td>
<td>1.3%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>
Appendix B: Tracer Testing and Flow-Pattern Modeling

975

days, but then the inflow stops. It is presumed that the wetland outflow is governed by a weir structure. The tracer concentration response at the system outlet is shown in Figure B.7. Two artifacts of the test results are apparent. First, there is a delay as the water level builds up in the wetland, with low outflows as the height over the weir increases. If there were no outflow, it would take three days to fill the wetland to the new depth. After the inflow ceases, the wetland drains back down to the elevation of the weir. Outflows decrease back down to zero over the next few days. There is residual tracer in the wetland, corresponding to a recovery of 68% (32% remaining). As a second result, the concentration near the outflow point, which has become stagnant, remains at an elevated value until another event again causes outflow.

Such distortion of the DTD makes it difficult to ascertain the hydraulic parameters of the wetland. A flow-weighted time, proportional to the volume of water that has exited the wetland, removes these two artifacts. On that basis, the response changes to the shape characteristic of continuous flow systems. There are alternative choices for scaling, as discussed by Werner and Kadlec (1996), who provide the mathematical background for rescaling to the volumetric approach.

VARIABILITY IN TRACER RESULTS

As for any other treatment wetland performance parameter, there is variability in the volumetric and DTD efficiency results. That variability may be caused by seasonal variables, such as litter or algal density; or it may be caused by meteorological factors, such as wind, evapotranspiration (ET), or rainfall. A set of six warm-season tests on FWS wetland EW3 at Des Plaines, Illinois, gave $e_V = 0.70 \pm 0.13$ and $e_{DTD} = 0.62 \pm 0.10$ (Kadlec, 1994). Results from the Tres Rios, Arizona, demonstration wetlands ($N = 3$) showed a narrower range for e_{DTD}, with a typical coefficient of variation of 0.03–0.06.

FIGURE B.6 Tracer test results for a HSSF wetland at Minoa, New York, together with three different TIS fits. Conditions are given in Table B.3.

FIGURE B.7 Tracer response for a hypothetical stormwater wetland. The inflow is presumed to last for three days (a), during which the system fills to a new operating depth. The tracer is not completely flushed (b), resulting in a residual concentration. The solid line shows a rescaling of “time” to a cumulative volume outflow basis.
However, there was wider variability for e_V, with a typical coefficient of variation of 0.13–0.33. Thus, it appears that the coefficient of variation for efficiency results may be in the range 5–30% for FWS systems.

COMMON ABERRATIONS

Although it is tempting to think that the entire wetland water volume is swept by the flow in a moderately uniform manner giving rise to a gamma DTD, deviations from that pattern are commonly found. Two pathological situations are the existence of short-circuits from inlet to outlet and the existence of deadwater zones that are not swept by flow.

SHORT-CIRCUITING

When part of the water follows a fast, preferential path through the wetland, the result is termed channeling or short-circuiting. On the ground, these fast flow paths may result from bathymetry, such as deeper channels from inlet to outlet (see Figure B.8). The tracer detention time will be less than the nominal. A pathological case is illustrated in Figure B.9, Lakeland, Florida, cell 1 (Keller and Bays, 2001). The recovery was 106%. The nominal detention time was 17.3 days; the tracer detention time was 5.8 days, for a volumetric efficiency of 33%. The dimensionless variance was 0.66, corresponding to $N_{TIS} = 1.5$. The DTD curve for this wetland was clearly bimodal, indicating two flow paths. When the DTD is fit with a two-path
Appendix B: Tracer Testing and Flow-Pattern Modeling

model, the fit is excellent (see section titled Other Flow Models). About a third of the water had a mean detention time of 1.6 days, whereas the remaining two thirds had a mean detention time of 7.9 days. Cell 1 contained large internal areas of linear spoil mounds parallel to the direction of flow and, therefore, presumably, was highly channelized between these areas.

DEAD ZONES

Wetlands often contain parcels of water that are not in the main flow path and are not flushed by flowing water. Such zones may be due to water trapped in a mass of algae or a dense clump of vegetation or litter in the FWS wetland. In a HSSF wetland, there may be dead-end pores. Tracer enters and departs these zones by diffusion, which is usually a slow process compared to flow. As a consequence, the tracer response will exhibit a long tail corresponding to the tracer that parked temporarily in the dead zones. An example from Sacramento, California, is shown in Figure B.10, along with a TIS fit (Nolte and Associates, 1998b). The nominal detention time for this test was 5.5 days, the tracer detention time was 5.3 days, and the recovery was 97%. If the moment method is used to fit the data, the tail region controls, and the peak zone is poorly represented. Alternative methods of analysis are discussed in the section on wetland−tracer interactions that can account for the dead zones, but at the expense of additional modeling parameters. The implications for pollutant removal are discussed in the section on pollutant removal effects.

EXTENSIONS TO THE TIS FLOW MODEL

The simplest TIS model, and the gamma distribution that represents it, does not allow for some of the very real phenomena that may be encountered. DTD may result from velocity profile effects rather than mixing. When that is the case, it has a zero portion for short times, up to the shortest travel time experienced by rapidly moving water. For instance, that rapid path is typically associated with surface water layers in unvegetated areas of a FWS wetland. In HSSF wetlands, the rapid paths are the most direct routes between the media particles, as opposed to paths that wander off to the side to move around particles. In either case, there is a nonzero minimum of the travel time. This concept is discussed in detail in the engineering literature (see for example, Levenspiel, 1972). Another set of unaccounted processes includes water gains and losses, in the form of seepage, rainfall, and evaporation. These factors may be included by modifying the TIS model structure.

TIS PLUS A DELAY

The TIS model has been described earlier (in the section on the TIS flow model) as an example of the use of least squares fitting of DTDs. As noted, it is a two-parameter fit, using detention time τ, and number of tanks N. It does not suffer from a constraint of small degrees of nonideality and can cover the entire range from one well-mixed unit to a plug flow. Drawbacks are the inability to describe either the breakthrough delay or long tail resulting from retardation.

The tanks plus a delay have been utilized as a model for dealing with the breakthrough delay evidenced in most tracer response curves. This model may also be easily coded in a spreadsheet, but there are three parameters: the delay time t_D, the detention time τ, and the number of tanks N. Many authors recommend the inclusion of this component of the response (Kadlec et al., 1993; Kadlec and Knight, 1996; Chazarenc et al., 2004; Marsili-Libelli and Checchi, 2005).

![Figure B.10](image-url) Tracer test result from the Sacramento, California, wetland Cell 7. The least squares TIS model does not account for the long tail of the experimental curve. The moment method fits the tail, but misses the peak area. (Data from Nolte and Associates (1998a) Sacramento Regional Wastewater Treatment Plant Demonstration Wetlands Project. 1997 Annual Report to Sacramento Regional County Sanitation District, Nolte and Associates.)
\[f(t) = \begin{cases} \frac{1}{t_i(N-1)!} \left(\frac{t-t_0}{t_i} \right)^{N-1} e^{-\frac{t-t_0}{t_i}} & t > t_0 \\ 0 & t < t_0 \end{cases} \] \hspace{1cm} (B.27)

where
\[t = \text{detention time, d} \]
\[t_0 = \text{delay time, d} \]
\[t_i = \text{mean detention time in one tank, d} \]

Infiltration

Some wetlands may safely infiltrate water into the ground. For example, the Tres Rios, Arizona, cobble site wetland, C1, infiltrated 60–80% of the incoming water (Kadlec, 2001c). Similarly, the Imperial, California, wetlands also leaked a considerable fraction of the incoming water, 40–60% (TTI and WMS, 2006). The tracer test theory does not usually include this leak effect on the water mass balance.

For illustration, let the model framework be the TIS concept discussed previously. The volume, depth, and planar area are considered to be the same for each unit. The leak rate is also assumed to be the same in each unit. For simplicity, the effects of rain and ET will be omitted from this analysis. The steady-flow water mass balance equation for the \(j \)-th well-mixed unit is

\[Q_{j-1} = Q_j + L \quad j = 1, 2, \ldots, N \] \hspace{1cm} (B.28)

where
\[L = \text{leak from unit } j, \text{ m}^3/\text{d} \]
\[N = \text{total number of units in the TIS model, integer} \]
\[Q_j = \text{overland flow from unit } j, \text{ m}^3/\text{d} \]

Leakage acts to reduce the flow as water moves from inlet to outlet. Equation B.28 may be solved sequentially to determine the flow exiting each unit:

\[Q_j = Q_i - jL \quad j = 1, 2, \ldots, N \] \hspace{1cm} (B.29)

where
\[Q_i = \text{inlet flow rate, m}^3/\text{d} \]

The total leakage is

\[NL = \alpha Q_i \] \hspace{1cm} (B.30)

where
\[\alpha = \text{total fraction of inlet flow that is lost through leakage, dimensionless} \]

At constant water volume in each unit, the tracer mass balances are

\[V_j \frac{dC_j}{dt} = Q_j C_{j-1} - (Q_j + L)C_j \quad j = 1, 2, \ldots, N \] \hspace{1cm} (B.31)

where
\[C_j = \text{tracer concentration in unit } j, \text{ mg/L} = g/m^3 \]
\[t = \text{time, d} \]
\[V_j = \text{volume of unit } j, \text{ m}^3 \]

Equations B.28 and B.31 combine to give

\[\tau_j \frac{dC_j}{dt} + C_j = C_{j-1} \quad j = 1, 2, \ldots, N \] \hspace{1cm} (B.32)

where
\[\tau_j = \frac{\tau_{in}}{N - \alpha(j-1)} \quad j = 1, 2, \ldots, N \] \hspace{1cm} (B.33)

The individual unit detention times \(\tau_j \) are based on the combination of surface flow and leakage leaving the \(j \)-th unit and its water volume. The nominal system detention time based on inlet flow \(Q_i \) and the total system water volume is

\[\tau_{in} = \frac{NV}{Q_i} \] \hspace{1cm} (B.34)

If there is no leakage, then \(\alpha = 0 \), and \(\tau_j = \tau_{in}/N \).

\[\tau_{an} = \tau_{in} \left(\sum_{j=1}^{N} \frac{1}{N - \alpha(j-1)} \right) \] \hspace{1cm} (B.35)

where
\[\alpha = \text{water loss fraction, dimensionless} \]
\[(\alpha = 1 - R = 1 - Q_j/Q_i) \]
\[j = \text{tank number counter, dimensionless} \]
\[N = \text{total number of tanks, integer} \]
\[\tau_{an} = \text{actual nominal detention time, d} \]
\[\tau_{in} = \text{flow-based inlet nominal detention time, d} \]

The effect of leakage on the measured detention time can be quite large for high values of \(\alpha \), especially for high values of \(N_{TIS} \) (Figure B.11). For example, if half the incoming water is lost, the true detention time for a 3-TIS wetland will be 23% greater than the inlet nominal detention time. The use of an average flow rate will always give an overestimate of the actual detention time.

The tracer is lost to leakage, and so the recovery will be less than 100%. The lowered surface outflow leads to a low and late peak (Figure B.12). However, the shape of the response is not affected, and hence the analysis of the response will give the same dimensionless variance (same number of TIS).

Rain and Evapotranspiration

The loss or gain of water to or from the atmosphere does not carry tracer in or out of the wetland. However, ET does cause the water to slow as it passes through the system, and rain causes it to accelerate. Because there is normally level control at the outlet, the depth remains unchanged, but the linear
Appendix B: Tracer Testing and Flow-Pattern Modeling

velocity of the remaining water is altered. Accordingly, for ET, the detention time is increased (see Chapter 2), and dissolved constituents become more concentrated. Conversely, for rain, the detention time is decreased, and dissolved constituents become diluted. The effects on tracer response have been discussed by Chazarenc et al. (2003; 2004), who present the theoretical result for detention time in plug flow systems with ET (Chapter 2, Equation 2.8):

\[\tau_{an} = \tau_{m} \left(\ln(R) / R - 1 \right) \]

where

- \(R \) = water recovery fraction, dimensionless (\(R = Q_{ni} / Q_i \))
- \(\tau_{an} \) = actual nominal detention time, d
- \(\tau_{m} \) = flow-based inlet nominal detention time, d

This plug flow formula works equally well for rainfall gains. However, this is not the case for a TIS system, in which the influence of precipitation and ET is greater. The actual detention time (tracer detention time) in a TIS wetland is

\[\tau_{an} = \tau_{m} \left(1 - \frac{1}{N} \sum_{j=1}^{N} \frac{1 - \alpha_j}{N} \right) \] \hspace{1cm} (B.36)

where

- \(\alpha \) = water loss fraction, dimensionless
- \(\alpha = 1 - R = 1 - Q_j / Q_i \)
- \(j \) = tank number counter, dimensionless
- \(N \) = total number of tanks, integer

In the limit, as \(N \) becomes very large, Equation B.36 reduces to Equation B.35.

FIGURE B.11 Detention times in leaking wetland systems, expressed as a ratio to the nominal detention time, computed from the inlet flow rate. The fractional water loss is the total for the entire wetland.

FIGURE B.12 The effect of leakage on a tracer response for 4 TIS. The line is the forecast result for no leakage loss. The circles represent the result for 50% water loss due to leakage.
The effect of ET on the measured detention time can be quite large for high values of \(\alpha \), especially for low NTIS (Figure B.13). For example, if half the incoming water is lost, the true detention time for a 3-TIS wetland will be 57% greater than the inlet nominal detention time. The use of an average flow rate will always give an underestimate of the actual detention time for ET and an underestimate for rain cases. The error is large for relatively large amounts of ET.

None of the tracer is lost to ET, so the theoretical recovery should be 100%. The combination of the evaporative concentration and lowered outflow leads to a high and late peak (Figure B.14). The combination of rain dilution and increased outflow leads to a low and early peak. However, the shape of the response is not affected, and hence the analysis of the response will give the same dimensionless variance (the same number of TIS).

WETLAND-TRACER INTERACTIONS

In the foregoing, it has been assumed that the wetland water body can be considered as vertically uniform and that the tracer does not interact with any of the solids or biota in the system. In some cases, these assumptions are not warranted.

WIND

If the wetland contains significant areas of open water, wind can be a factor in tracer movement. In ponds, field studies with drogues and computational fluid dynamics (CFD) modeling (HYDRO-3D) have shown that surface velocities may be 30-fold greater than deep-layer velocities and that the velocity profile is most affected in the top 10–15 cm (Guganessharajah, 2001). Lloyd *et al.* (2003) implemented windbreaks around a shallow pond (1.1 m deep), thus isolating the system from
Appendix B: Tracer Testing and Flow-Pattern Modeling

winds that averaged only 0.8 m/s. The volumetric efficiency was increased from 50% to 74%, and the dispersion number was decreased from 0.66 to 0.40.

In laboratory flume experiments, with wooden dowels representing plants, Stephan et al. (2004) showed that tracer response curves differed in shape depending on whether the wind was with or against the flow. Wind acting on surface layers drives a surface current in the wind direction and promotes vertical mixing via recirculation in the water column. Therefore, Stephan et al. (2004) found that the tail of the response curve was shortened for a wind of 2.4 m/s blowing against the flow direction. The volumetric efficiency was higher with the tail wind (83%) than with the head wind (74%).

Stairs (1993) found that a tail wind of 5.7 m/s caused a very early peak concentration in the response compared to more quiescent conditions for an unvegetated FWS wetland.

There are no sufficient experimental results on vegetated operating FWS systems to formulate quantitative measures of wind effects at this point in time.

ICE

Tracer tests for frozen conditions were conducted by Smith et al. (2005), who concluded that flow conditions “appeared to be good in both ice-covered and unfrozen conditions.” The shapes of the tracer responses were very similar, and the volumetric efficiencies were nearly the same, for ice-free and under ice conditions.

DEGRADATION AND LOSS

Recovery of tracer is an extremely important quality check for the measured DTD. Failure to recover 100% of the tracer may mean that the tracer adsorbed or was degraded during passage through the wetland. Organic compounds, including the fluorimetric dyes often used for water tracing in mineral systems, are notorious in this respect: they disappear in wetlands. Noninteractive, inorganic substances are to be preferred, lithium ions and bromide ions being two of the more popular ones. Batch microcosm tests can help to establish the degree of interaction between a specific tracer and the wetland in question. Interactive, disappearing tracers produce serious errors in the inferred mixing parameters.

The use of a sorbing tracer can distort the tracer response curve and lead to errors in calculating hydraulic characteristics. An irreversibly sorbing tracer such as rhodamine WT may cause the peak time to be shorter than it really is, whereas a reversibly sorbing tracer will cause a flattening of the DTD and an unrepresentative extension of the tail. Dierberg and DeBusk (2005) reported that the recovery of rhodamine WT declined as the initial concentration of the impulse was reduced.

It is possible that molecular tracers may degrade during travel through the wetland. This is especially true for the organic dyes, such as rhodamine. These may be subject to photolytic decomposition, or to the action of microbes that use the tracer as a carbon source. Irreversible sorption has the same effect, because it removes the tracer from the water, with no chance of return. Additionally, it is possible that the tracer is permanently removed by plant uptake, at least on the time scale of a tracer test. Although such losses cannot be entirely prevented, it is possible to assess its potential effects on the results of the test.

We begin by supposing that the removal is first-order and apportioned equally in all portions of the water column. Therefore, each parcel of water traversing the wetland will lose tracer exponentially with respect to its travel time. We also suppose that the DTD is given by a gamma function, according to Equation B.25. If the rate coefficient is \(k \), then the fractional concentration of the tracer exiting with a given parcel between time \(t \) and time \(t + dt \) is

\[
\frac{C(t)}{C_i} = g(t)e^{-kt} = \frac{1}{t_f\Gamma(N)} \left(\frac{t}{t_f} \right)^{N-1} e^{-(t/t_f)}e^{-kt} \quad (B.37)
\]

where

\[
C = \text{tracer outlet concentration, mg/L} \\
C_i = \text{tracer inlet concentration, mg/L} \\
k = \text{tracer loss rate coefficient, 1/d} \\
t = \text{detention time, d} \\
t_f = \text{mean detention time in one tank, d} \\
N = \text{number of tanks}
\]

This equation is still a gamma distribution with the same \(N \) as that for the nondestructive case. However, the detention time \(t = Nt_f \) has been shortened:

\[
\tau_{app} = N \frac{t_f}{1 + kt_f} = \frac{\tau_{act}}{1 + k N \tau_{app}} \quad (B.38)
\]

where

\[
\tau_{act} = \text{actual detention time, d} \\
\tau_{app} = \text{apparent detention time, d}
\]

Because the apparent detention time has been shortened, the volumetric efficiency will appear to be reduced accordingly. However, the number of TIS is not affected. If the distribution of Equation B.25 is averaged over all parcels, the mass recovery of tracer is given by

\[
\text{Fraction recovery} = \left(1 - k \frac{\tau_{app}}{N} \right)^N \quad (B.39)
\]

An example of the effect of tracer loss is given in Figure B.15. This effect is illustrated in the work of Bowmer (1987).

RETARDATION

The tracer may also be retained in the wetland, but not lost. This can occur because of the presence of dead zones, either large or small scale, that gain the tracer by diffusion, retain it until the pulse has passed, and then release it back to the flowing water. Reversible sorption on any of several wetland solids can lead to the same phenomenon. Tracer is sorbed on
the rising limb of the tracer pulse and released on the falling limb.

There are several wetland “compartments” that can serve to store inert solutes. The wetland sediments or media may reversibly sorb the tracer, and this possibility may be qualitatively checked with laboratory tests. However, there may be several other types of “parking places” in the wetland environment. These include stagnant pools of water, pore water associated with litter or clumps of filamentous algae, and the upper layer of soil pore water. Side pools are accessible by wind-driven cross currents. Litter and biomass pore waters are accessible by diffusion. Topsoil pore waters are accessible by diffusion and transpiration flows. All of these mechanisms have two common features: the presence of a storage location, and exchange with the main streams of water. At a simple level, a common model can be used for all.

There are two components to the dynamic model needed to track a tracer with the possibility of storage. The one-dimensional mass balance for tracer for the flowing water is

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = \Phi(C_s - C)$$ \hspace{1cm} (B.40)

and the mass balance for storage is

$$\Omega \frac{\partial C_s}{\partial t} = -\Phi(C_s - C)$$ \hspace{1cm} (B.41)

where

- C = tracer water concentration, mg/L
- C_s = tracer storage concentration, mg/L
- t = time, d
- u = actual water velocity along flow path, m/d
- x = distance along flow path, m
- Φ = exchange flow with storage, (m3/d)/m3
- Ω = storage ratio, m3/m3

These equations are those used to track pulses of constituents in chromatography, in which delays are due to adsorption. If there is equilibrium between storage and moving water, then $C_s = \rho C$. We may then add Equations B.40 and B.41, and write

$$(1 + \Omega K) \frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = 0$$ \hspace{1cm} (B.42)

The factor $(1 + \Omega K)$ is represented as ρ, the retardation factor for the system. In ideal circumstances, there would be no storage, and ρ will be 1. However, that will rarely be the case in real wetland environments. The best we can hope for is that ρ is close to unity, and, luckily, this is often the case (see, for instance, Richardson et al., 2004).

Equations B.40 and B.41, either in continuous form or discretized, form the basis for the stage models of wetland tracer response. In continuous form, they have been termed the zones of the diminished mixing (ZDM) model, which has been calibrated to many FWS and HSSF wetlands (Werner and Kadlec, 2000a; 2000c). In discrete form, it is termed the finite stage model (Mangelson, 1972; U.S. EPA, 2000a). These will be discussed in more detail in the next section; here, the purpose is to determine the possible effects of storage and exchange on the parameterization of a tracer test.

The cases of water-dead zone storage and solid sorption are somewhat different in that dead water would normally be included in the calculation of nominal detention time, whereas solid sorption storage would not.

For the case of solid sorption storage, the effect of storage is to delay and broaden the tracer response curve. This means that the tracer detention time is lengthened compared to the nominal, and the number of TIS is reduced.

For the case of water storage in dead zones, the effect of storage is to accelerate and broaden the tracer-response curve. That means that the tracer detention time is shortened compared to the nominal, and the number of TIS is reduced.

FIGURE B.15 The effect of tracer loss on the DTD for a wetland with $N = 4$. The actual detention time was ten days, the measured tracer detention was 8.4 days, and the mass loss of tracer was 50%.
An Example

These ideas are illustrated by considering a FWS wetland receiving 50 m3/d of water. It is assumed that the system contains an estimated 1,000 m3 of water, computed from stage and bathymetric data. The nominal detention time is easily seen to be 20 days. We further suppose that the system behaves similar to 4 TIS. Equations B.40 and B.41 may be used to assess the effects of added sorption storage on the form of the tracer response. For illustration, suppose that sorption storage provides 50% augmentation of the storage in the water column and the exchange rate of tracer is 50% of the water flow rate. It is found that the measured tracer detention time would be 21.7 days and the system displays behavior characteristic of 2.2 TIS. The nonsorbing and sorbing tracer response curves are shown in Figure B.16.

The illustration is continued for the dead water case. Suppose that dead water storage provides 50% of the storage in the water column and the exchange rate of tracer is 50% of the water flow rate. It is found that the measured tracer detention time would be 13.8 days, and the system displays behavior characteristic of 1.7 TIS. The non-dead-water and dead-water tracer response curves are shown in Figure B.17.

OTHER FLOW MODELS

Whereas the TIS model described previously is the most popular flow model, other flow models are also used in the wetland literature.

PLUG FLOW WITH DISPERSION

Another model uses a dispersion process superimposed on a plug flow model (PFD). Mixing is presumed to follow a convective diffusion equation. Although the PFD model has been advocated for wetlands (e.g., Pardue et al., 2000; Wang, 2006), it is doubtful whether it is the most appropriate
model of comparable complexity. The dispersion coefficient describes eddy transport of water elements both upstream and downstream. In FWS wetlands, such mixing may not occur because flow is often predominantly laminar.

A one-dimensional spatial model is chosen because analytical expressions are available for computation of pollutant removal for one-dimensional cases (Fogler, 1992). A two-dimensional version requires a two-dimensional velocity field, which are virtually nonexistent for treatment wetlands. The tracer mass balance equation includes both spatial and temporal variability:

$$D \frac{\partial^2 C}{\partial x^2} - \frac{\partial (uC)}{\partial x} = \frac{\partial C}{\partial t}$$ \hspace{1cm} (B.43)

where
- \(u\) = actual water velocity, \(m/d\)
- \(D\) = dispersion coefficient, \(m^2/d\)
- \(x\) = distance from inlet toward outlet, \(m\)

The appropriate wetland boundary conditions for this mass balance are known as the closed-closed boundary conditions (Fogler, 1992). These imply that no tracer can diffuse back from the wetland into the inlet pipe or up the exit structure at the wetland outlet. These are different from the open-open boundary conditions that are appropriate for river studies. There are analytical, closed form solutions to the latter case, which have led to their repeated misapplication to wetlands (Bavor et al., 1988; Stairs, 1993). There are no closed-form solutions for tracer responses for the wetland case, but numerical solutions to the closed-closed tracer mass balance have been available for more than three decades (Levenspiel, 1972). It is possible to calculate the dispersion constant that fits a particular dataset, although there are issues of accuracy. This model is not advocated here, because the PFD model is only infrequently applicable to treatment wetlands.

The dimensionless parameter that characterizes Equation B.43 is the Peclet number (Pe), or, its inverse, the wetland dispersion number (\(\varphi\)).

$$\varphi = \frac{D}{uL} = \frac{1}{Pe}$$ \hspace{1cm} (B.44)

where
- \(\varphi\) = wetland dispersion number, dimensionless
- \(D\) = dispersion coefficient, \(m^2/d\)
- \(L\) = distance from inlet to outlet, \(m\)
- \(Pe\) = Peclet number, dimensionless
- \(u\) = superficial water velocity, \(m/d\)

A primary interesting result from the model is the dimensionless variance, which can be written in explicit form for the PFD model:

$$\sigma^2_0 = 2\varphi - 2\varphi^2(1 - e^{-1/\varphi})$$ \hspace{1cm} (B.45)

The principal problems with the PFD model to wetlands have to do with meeting the assumptions implicit in the model. Levenspiel (1972) notes as follows:

In trying to account for large extents of backmixing with the dispersion model we meet with numerous difficulties. With increased axial dispersion it becomes increasingly unlikely that the assumptions of the dispersion model will be satisfied by the real system.

The condition of an “intermediate” amount of axial dispersion (or less) should be met in order to apply the PFD model, which is nominally taken to be \(D < 0.025\) (Levenspiel, 1972) and corresponds to about 20 TIS. The DTDs for FWS wetland systems are characterized by a large amount of apparent dispersion, with \(0.07 \leq D \leq 0.35\) (Kadlec, 1994). Therefore, generally, neither FWS nor HSSF wetlands are within the acceptable mixing range, although HSSF systems may sometimes be marginally within the range (see Tables 6.1 and 6.2, Chapter 6). However, a bigger obstacle to accepting the PFD model consists of the concentration profiles that are predicted for reactive constituents, because they predict features not seen in treatment wetlands.

The first-order concentration reduction produced by the closed-system PFD model is available in explicit form and is well known (see, for instance, Fogler, 1992):

$$\frac{(C - C^*)}{(C_o - C^*)} = \frac{4b e^{(Pe/2)}}{(1 + b)^2 e^{(Pe/2)} - (1 - b)^2 e^{(-Pe/2)}}$$ \hspace{1cm} (B.46)

(a) \(b = \sqrt{1 + \frac{4Da}{Pe}}\)

(b) \(Da = \frac{k\tau}{h}\)

(c) \(Pe = \frac{uL}{D}\)

where
- \(D\) = dispersion coefficient, \(m^2/d\)
- \(L\) = distance from inlet to outlet, \(m\)
- \(u\) = average superficial water velocity, \(m/d\)

This result is typically credited to Wehner and Wilhelm (1956).

Note that there are also two parameters in this reaction model: the rate coefficient \(k\) (or, equivalently, the Damköhler number \(Da\)), and the dispersion coefficient \(D\). This formulation has been advocated for wetlands and ponds (Reed et al., 1995; Crites and Tchobanoglous, 1998; Shilton and Mara, 2005; Crites et al., 2006). However, the longitudinal profiles that this model predicts for large degrees of mixing are not realistic.

PFD Longitudinal Profiles

Longitudinal profiles may be used to test the validity of alternative modeling assumptions. For instance, the PFD model
Appendix B: Tracer Testing and Flow-Pattern Modeling

forecasts the concentration profile through the wetland by

\[\frac{C(x)}{C_b} = \frac{2e^{(2D\varphi/2)} \left[(1 + b)e^{(D\varphi(1-x)/L)} - (1 - b)e^{-D\varphi(1-x)/L} \right]}{(1 + b)^2 e^{(2D\varphi/2)} - (1 - b)^2 e^{-2D\varphi/2}} \]

(B.48)

where

- \(x \) = distance in flow direction, wetland, m
- \(C(x) \) = concentration at length \(x \), g/m³

The longitudinal concentration profile is predicted to display an instantaneous drop at the wetland inlet. For \(\varphi = 0.2 \) and \(Da = 3 \), the decrease at the inlet is 30% (Figure B.18). For larger \(\varphi \) (more dispersion), the instantaneous drop is even larger, increasing to 55% at \(\varphi = 1.0 \). This unrealistically large concentration drop at the very start of the gradient has not been observed in wetland practice and, hence, the PFD model is not an acceptable alternative for most treatment wetland situations.

Interestingly, this predicted profile has only infrequently been examined in any of the literature pertaining to applications to ponds or wetlands, although the PFD model has been extensively utilized. In a pond environment, the situation is often one of considerable mixing because of wind and recirculation currents, and the concept of a sudden concentration change on entry is not unlikely. But in a treatment wetland, this model conceives of swirls that move back into the inlet region. That is a most unlikely scenario in a vegetated wetland environment.

PARALLEL PATHS

The parallel paths model has been described previously as an example of a method for dealing with the long tails evidenced in some tracers. This model may also be easily coded in a spreadsheet, but there are five parameters: the flow split, plus the detention time, and the number of tanks along both paths. Some authors recommend the two-path response model (Keller and Bays, 2001; Chazarenc et al., 2003; Wang, 2006; Wang et al., 2006). However, if a two-path model is warranted, then there is something seriously wrong with the wetland. It is the wetland that needs improvement, not the model.

FINITE AND INFINITE STAGES

The breakthrough delay and the long tail may be described by a model that incorporates a plug flow component and side-tank storage in a series of units (Figure B.19). A single stage of
this model consists of a plug flow unit (of volume V_{PF}), followed by a well-mixed unit (of volume V_a) that exchanges material with a side-storage unit (of volume V_d). There are five parameters in this model: the number of stages, the detention time, the fraction plug flow, the fraction active well-mixed, and the exchange flow ratio. The exchange flow between V_a and V_d is f, and the ratio to the through-flow is f/Q. The finite stage model comprises a small number (2–5) of these stages in series. The infinite stage model utilizes a large number (~100) of the stages.

The concept of the finite stage model was advanced by a number of early authors (Hovorka, 1961; Mangelson, 1972; Levenspiel, 1972). Buffham et al. (1970) set forth a family of models that rest on the concept of water elements being delayed a number of times during passage through a packed bed. These are based on the abstraction that water would flow uniformly through the bed (plug flow) if it were not that elements are detained at points during their travel, and elements so detained eventually rejoin the main flow after a time delay.

The finite stage model can provide an excellent fit of data from both ponds and wetlands (Mangelson, 1972; Nolte and Associates, 1998b). An example of the fit is given for cell 4 of the ENRP (Figure B.20). In this case, the response model is supported by the visual tracer study (see Figure B.8), in which the main flow path and side storages may easily be seen.

Werner and Kadlec (2000c) showed that the model could assume a limiting form for a very large number of stages. They termed this the zones of diminished mixing (ZDM) model, which contains four parameters: the detention time, the fraction dead zones, the fraction bypassing, and a dispersion number for the main flow path. Martinez and Wise (2003a) used the infinite stage model via the code of Runkel (1998), which is called OTIS (one-dimensional transport with inflow and storage).

Stage models do not lend themselves to an easy representation for computing pollutant removal. Thus, although they often can do an excellent job of representing the tracer response, they are of limited use in wetland evaluation and design.

Computational Fluid Dynamics (CFD)

Many treatment wetlands are not linear in their design and assume irregular shapes with irregular bathymetry. Flow distribution may be at a point along the inlet boundary rather than distributed across the width of the wetland. Additionally, vegetation density may not be spatially uniform. As with all other models, vertical averaging has always been utilized, although that assumption is questionable under many wetland circumstances. Flow modeling involves solution of mass and momentum balances on a two-dimensional grid, together with a tracer mass balance. This procedure has been utilized, for example, by Walker (1998), Persson et al. (1999), Koskiaho (2003), Wörman and Kronnäs (2005), Jenkins and Greenway (2005), Kjellin et al. (2006), and Lightbody et al. (2007). Several software packages are available for this purpose, including RMA4, MIKE-21, HYDRA3, and HYDRUS2D.

The advantage of CFD modeling is the ability to explore the consequences of alterations in the basin morphology on the volumetric and DTD efficiencies of a system. For instance, the use of point inlets and outlets has the conceptual potential to create dead zones in the corners of a rectangular wetland. This may be tested with CFD, and indeed, the corners are predicted to be excluded from the flow (Figure B.21). The CFD simulations of Koskiaho (2003) indicate that the flow can miss both the inlet and exit corners in rectangular wetlands. For this case, there are field data to confirm the predicted effect (Stairs, 1993; Stairs and Moore, 1994). The FWS wetland had an aspect ratio of L:W = 3:1 and was

![Figure B.20 Finite (N = 3) stage model of the tracer response of ENRP cell 4. The tracer detention time was 3.4 days. The plug flow fraction was 20%, active volume 40% and dead volume 40%. The exchange flow ratio was 0.4.](image-url)
Operating with and without a distribution header across the inlet, tracer testing indicated a volumetric efficiency of 84% with the header, and 66% without. With the header, NTIS = 4.5, and without, NTIS = 3.3. The field data indicate an overall hydraulic efficiency λ = 46% for no header and λ = 65% with a header. The simulation results of Persson et al. (1999) and Jenkins and Greenway (2005) provide reasonable forecasts of overall hydraulic efficiency λ of about 40–45% for unvegetated ponds of similar aspect ratio.

PREDICTIONS FROM TIS AND CFD FLOW MODELING

The goal for treatment wetland design is to be able to predict the efficiencies of wetlands based on their morphology. Simulation results have been used to provide a few first indications of such relationships.

UNVEGETATED SYSTEMS

Flat-bottom systems without plants have often been investigated. The effect of length-to-width ratios for ponds on dispersion has been reported by several researchers, and a summary of results is presented by Shilton and Mara (2005). Although the various pond regressions are for deep water environments compared to FWS wetlands, there is a trend, in all investigations, for the dispersion number \((D/hL)\) to decrease as L:W increases. In other words, longer and narrower ponds display characteristics closer to plug flow, although still displaying behaviors characterized by a small number of TIS. Jenkins and Greenway (2005) present simulation results for unvegetated FWS wetlands with point inlets and outlets, which may be expressed as

\[
e_v = 1 - e^{(-0.3L/W)} \quad \text{(B.49)}
\]

Thackson et al. (1987) presented a similar correlation for data from shallow ponds that substantially agrees with these simulation results (Walker, 1998; Jenkins and Greenway, 2005). Likewise, the NTIS value is high for high values of L:W. Therefore, for unvegetated FWS wetlands, there is essentially no advantage in L:W ratios being greater than ten. However, it must be noted that these results are for point inlets and outlets, which are not efficient and probably should not be used.

VEGETATED SYSTEMS

The presence of vegetation will markedly change the hydraulics of the wetland by creating less dispersion and higher efficiencies (Kadlec, 1994). For example, the simulation results of Persson et al. (1999) showed that the full vegetation of the South Gippsland, Australia, wetland would have increased \(e_v\) from 0.39 to 0.69 and NTIS from 5.7 to 15, compared to its existing condition. That existing condition was a channel from inlet to outlet, with only fringing vegetation.

The three principal variables associated with vegetation are: (1) percent cover, (2) stem density, and (3) orientation of patches. When vegetation is oriented in the flow direction, typically along the wetland edges, it is termed *fringing vegetation* (Persson et al., 1999; Jenkins and Greenway, 2005). When the orientation of patches is across the flow direction, it is termed *banded vegetation*. The simulation results of Jenkins and Greenway indicate that the use of banded vegetation is more efficient than fringing vegetation because of the shortcircuiting issue caused by the flow resistance in the fringes. Results from field studies in Florida (periphyton field cell tracer tests, unpublished data) and California (New River wetlands test results, unpublished data) tend to validate these simulation studies (Figure B.22).

If the vegetation density of a fringe is increased, then more flow is forced down the central channel, and efficiency drops. This was the simulation result of Jenkins and Greenway (2005), and the field result of Dal Cin and Persson (2000) and Stern et al. (2001).

BATHMETRY

Deep channels in the direction of flow cause shortcircuiting, whereas deep zones across the flow direction have little effect on flow patterns. The channelization effect is intuitively bad, and has been borne out in both simulation and field studies. It does little or no good to create the channel with meanders, that is, a serpentine deep channel from inlet to outlet (Persson et al., 1999).

The use of transverse deep zones in treatment wetlands has been advocated as promoting internal water redistribution and thus the improvement of volumetric and DTD efficiencies (Knight and Iverson, 1990; Knight, 1992; Knight et al., 1994; Knight et al., 2004). However, simulation results suggest that \(e_v\) is little changed by deep zones (0.80 versus 0.81), and \(e_{DTD}\) only modestly improved (0.96 versus 0.92) for the Gippsland,
Australia, wetland (Persson et al., 1999). At the Tres Rios, Arizona, site, 12 FWS wetlands were operated as triplicates of 0, 1, 2, and 3 internal deep zones, and tracer tested (Whitmer, 1998). Analysis of that data via least-squares parameter estimation provided values for \(\tau \) and \(N \). The resulting efficiencies are shown in Table B.4 for the 12 research wetlands. There was essentially no difference in volumetric efficiency or \(N \text{TIS} \) due to the number of deep zones, and hence none in hydraulic efficiency \((\alpha = 0.05) \) (Kadlec, 2007).

Knight et al. (1994) operated a set of six treatment wetlands receiving treated paper-pulp-mill effluent for two years. Two internal deep zones comprising 25, 35, and 45% of the area were included in three of the six (Table B.5). Although there was variability in flow (different HLRs) and aspect ratios (2.5, 5, and 10), the authors concluded that there was improvement in nitrogen removal performance due to deep zones. Tracer data from that project are here reanalyzed, and characterized by a tanks-in-series (TIS) detention time distribution. The effect of deep zones was to decrease the number of TIS. However, for the two larger cell pairs, the volumetric efficiency was improved by deep-zone addition (Table B.5).

Hummocks and Islands

Any wetland feature that protrudes from the water causes a reduction in wetland water volume and surface area compared to the wetland in its absence. Therefore, there is a penalty for such features in terms of the detention time or hydraulic loading. The argument has been made that islands (hummocks are small islands) promote better flow distribution and thus increase the DTD efficiency of the system (e.g., Thullen et al., 2005); however, field tests at Tres Rios do not support that contention (city of Phoenix, unpublished data).

According to CFD simulations for shallow ponds, this effect is present in wetlands without vegetation (Persson et al., 1999). However, CFD results for the Ekeby, Sweden, FWS wetland led to the conclusion that ‘According to the simulations, the constructed deep zones and islands had only

Internal Deep Zones	Percent Deep	NTIS	Volumetric Efficiency \((\varepsilon_v) \)	DTD Efficiency \((\varepsilon_{\text{TIS}}) \)	Hydraulic Efficiency \((\alpha) \)
0	12.5	3.30 ± 0.79	0.56 ± 0.19	0.69 ± 0.07	0.38 ± 0.11
1	20	3.93 ± 0.31	0.64 ± 0.20	0.74 ± 0.02	0.47 ± 0.14
2	28	4.00 ± 0.40	0.67 ± 0.08	0.75 ± 0.03	0.50 ± 0.04
3	35	3.63 ± 0.06	0.65 ± 0.08	0.72 ± 0.01	0.47 ± 0.06
Mean	3.70	0.63	0.73	0.46	

Note: Means ± standard deviations.
Appendix B: Tracer Testing and Flow-Pattern Modeling

a minor effect on the residence time distribution” (Kjellin et al., 2006). The effect of islands in unvegetated systems is to divert flow toward corner zones that would otherwise not be accessed by the flowing water. However, in vegetated systems, the flow is predominantly directed by the vegetation, and not the bathymetry.

Underwater features, such as cross-flow benches or “speed bumps,” have been utilized for the expressed purpose of redistributing flow. According to CFD simulations, this is effective for unvegetated systems (Persson et al., 1999). The field experience of Simi and Mitchell (1999) was that speed bumps and deep zones promoted mixing, such that a FWS wetland of L:W = 2 behaved approximately as NTIS = 2.

Peninsulas and Sinuous Flow

Because of the strong effect of the length-to-width ratio that prevails for unvegetated FWS wetlands, it has been surmised that it is very advantageous to utilize high L:W for vegetated systems. Very often, the site boundaries do not allow linear wetlands of great length and, consequently, the strategy of folding the wetland several times is used to lengthen the L:W ratio. Such “back-and-forth” flow paths require the use of internal divider berms separating the passes of the flow path. This configuration is sometimes referred to as a sinuous path system in wetlands, but the equivalent in ponds is the use of baffles. Baffles improve the efficiencies of ponds, according to both CFD and field data. Vega et al. (2003) used simulation to predict that a pond of 2:1 aspect would show an improvement of eV from 74 to 84%, and NTIS from 3.94 to 5.5, for the addition of two baffles (18:1 with baffles). Lloyd et al. (2003) measured an increase in eV from 42 to 50%, and NTIS from 1.46 to 1.57, for two baffles in a pond of L:W = 4:1 (35:1 with baffles). Thus, improvement is found for the use of sinuous paths for unvegetated systems. However, pond systems often have low NTIS and low volumetric efficiency compared to vegetated wetlands.

The L:W ratio increases as the square of the number of passes. Sinuous and nonsinuous vegetated wetlands were run side by side at Listowel, Ontario, but unfortunately, no tracer tests were run (Herskowitz, 1986). However, there were improvements in pollutant removal performance for the sinuous systems. A tracer test was run on a FWS wetland of overall aspect L:W = 1:1, with three divider berms creating a four-pass back-and-forth flow pattern at Hillsdale, Michigan. The nominal flow aspect ratio was thus 16:1. Recovery was 70%, and NTIS = 4.3, but the volumetric efficiency was only 20–30%. Evidently flow followed small channels within each pass and failed to reach the majority of side areas.

In contrast, a side-by-side tracer test of a one-pass and a three-pass system of the same overall aspect (5:1) showed major differences (CH2M Hill, 2003a). Recoveries were similar but low (45 and 46%). The nonsinuous system (L:W = 5:1) had NTIS = 9 and eV = 0.88, whereas the sinuous system (L:W = 45) had NTIS = 25 and eV = 0.58. As a consequence, the hydraulic efficiency of the sinuous system was lower (λ = 0.56) than that of the nonsinuous system (λ = 0.78).

These studies are insufficient to draw conclusions about the efficacy of sinuous designs, but do provide preliminary indications that the length-to-width advantage may be overridden by the creation of numerous corner dead zones. Additionally, the divider berms occupy a portion of the footprint and so contribute to a loss of wetland area.

Compartmentalization

Efficiencies may be increased by subdividing the wetland into a number of cells in series. This has the effect of lowering wind fetch and thus preventing large-scale recirculation. Compartmentalization also causes the water to be collected at each cell outlet, thus blending the high- and low-speed flow elements and then redistributing them.

<table>
<thead>
<tr>
<th>Wetland</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (m²)</td>
<td>4,048</td>
<td>4,048</td>
<td>2,024</td>
<td>2,024</td>
<td>1,012</td>
<td>1,012</td>
</tr>
<tr>
<td>Aspect</td>
<td>2.47</td>
<td>2.47</td>
<td>4.94</td>
<td>4.94</td>
<td>9.88</td>
<td>9.88</td>
</tr>
<tr>
<td>DZ %</td>
<td>5</td>
<td>25</td>
<td>5</td>
<td>35</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>Depth (m)</td>
<td>0.270</td>
<td>0.380</td>
<td>0.250</td>
<td>0.480</td>
<td>0.270</td>
<td>0.580</td>
</tr>
<tr>
<td>HLR (cm/d)</td>
<td>3.16</td>
<td>3.38</td>
<td>4.83</td>
<td>3.99</td>
<td>7.82</td>
<td>8.13</td>
</tr>
<tr>
<td>Nominal HRT (d)</td>
<td>8.54</td>
<td>11.23</td>
<td>5.17</td>
<td>12.04</td>
<td>3.45</td>
<td>7.13</td>
</tr>
<tr>
<td>NTIS</td>
<td>4.60</td>
<td>3.60</td>
<td>4.00</td>
<td>3.50</td>
<td>10.70</td>
<td>2.00</td>
</tr>
<tr>
<td>Volume efficiency</td>
<td>0.63</td>
<td>0.81</td>
<td>0.43</td>
<td>0.82</td>
<td>0.91</td>
<td>0.74</td>
</tr>
<tr>
<td>Hydraulic efficiency</td>
<td>0.49</td>
<td>0.59</td>
<td>0.32</td>
<td>0.59</td>
<td>0.83</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Source: Hydraulic and concentration data are from Knight et al. (1994) TAPPI Journal 77(5): 240–245. The DTD and k-value analyses are from this work.

© 2009 by Taylor & Francis Group, LLC
On a theoretical basis, the effect on detention time is simply to break up the total detention time into pieces proportional to the volumes contained in the component cells:

\[\tau = \sum_{j=1}^{n} \tau_j \]

(B.50)

where

- \(n \) = number of compartments
- \(\tau_j \) = detention time in the \(j \)th compartment, \(d \)

However, the effect on the DTD efficiency is a bit more complicated. For cells in series, the variance of the tracer response for the system is the sum of variances for the individual cells (Levenspiel, 1972):

\[\sigma^2 = \sum_{j=1}^{n} \sigma_j^2 \]

(B.51)

where

- \(\sigma_j^2 \) = variance change in the \(j \)th compartment, \(d^2 \)

This may be related to the detention time and number of TIS for each compartment. From Equations B.22 and B.24,

\[\sigma_j^2 = \frac{\tau_j}{N_j} \]

(B.52)

where then the system is represented by:

- \(N_j \) = TIS for the \(j \)th compartment

\[\frac{\tau^2}{N} = \sum_{j=1}^{n} \frac{\tau_j^2}{N_j} \]

(B.53)

or

\[\frac{1}{N} = \sum_{j=1}^{n} \left[\frac{\tau_j}{\tau^2} \right] \frac{1}{N_j} \]

(B.54)

In other words, the reciprocal \(NTIS \) values are additive in proportion to the square of the detention time fractions. If the compartments are all of equal size, then the \(NTIS \) values are simply additive, but not otherwise. For example, if 90% of the wetland is a compartment that behaves as 4 TIS, and the remaining 10% is a compartment that behaves as 10 TIS, then the system will act like 4.9 TIS.

It may easily be shown that pollutant removal is improved by compartmentalization because it moves the system closer to plug flow. However, for a fixed footprint, the wetland area is decreased because of the interior divider berms, and therefore multiple compartmentalization is not necessarily advantageous.

At the present time, it is necessary to rely on simulation results because there are not side-by-side tracer tests of compartmentalized and noncompartmentalized systems.

TRACER TESTING PROTOCOLS

TRACER SELECTION

Many different tracers have been used for hydraulic analysis of treatment wetlands. Desirable properties are that it is soluble in water, does not react with the pollutants or wetland constituents, occurs at low background levels within the wetland, may be easily analyzed, has low toxicity, and does not influence the flow pattern in a significant way (Headley and Kadlec, 2007). The three most common choices for wetland tracers have been fluorescent dyes and lithium or bromide salts. In FWS wetlands, both dyes and salts have been successfully used. Studies in HSSF and VF wetlands are generally performed using salt tracers.

Radioactive tracers, such as tritium, have very good tracer properties and have been used in constructed wetlands (Crohn et al., 2005; Xu et al., 2005; Kjellin et al., 2006). However, the use of radioactive substances in wetlands is often precluded by regulatory requirements and specific analytical requirements.

Dye Tracers

Dyes have advantages of low detection limits, zero natural background, and low relative cost. However, they are susceptible to both photodegradation and biodegradation (Dierberg and DeBusk, 2005). This can complicate the analysis of tracer data, as discussed above.

Rhodamine WT is the most commonly used dye, mainly because of availability. Dissolved solids have no effect below about 600 mg/L, and pH has no effect above pH = 6, although the level of fluorescence is temperature sensitive, changing about 2% per degree Celsius (Smart and Laidlaw, 1977). Rhodamine WT is susceptible to biodegradation, photolysis, and adsorption onto organic solids, detritus, and some plastics (Smart and Laidlaw, 1977; Lin et al., 2003a; Dierberg and DeBusk, 2005). Due to the above characteristics, rhodamine WT should only be used in short-term tests (\(\tau \), less than about three days) and within environments that are not highly organic.

Rhodamine WT is typically measured using fluorescence spectrophotometry at wavelength 558 nm and an emission wavelength of 580 nm (Smart and Laidlaw, 1977; Simi and Mitchell, 1999). Other dyes that have been used with varying degrees of success include eriochrome acid red (Bowmer, 1987), and uranine and eosine (Netter and Bischofsberger, 1990; Netter, 1994).

At high concentrations, fluorescent dyes are visible in FWS wetlands. For instance, just a cupful of RWT can easily be tracked through a 1-ha system. It is also feasible to use RWT for visible studies on large wetlands, such as the 147-ha cell 4 of the ENRP (see Figure B.8) (Dierberg et al., 2005). Visible studies are useful for establishing blatant shortcircuits, and cross-levée leakage.

Salt Tracers

Bromide and lithium are the most extensively used ionic tracers, mainly due to their perceived noninteractive character.
Appendix B: Tracer Testing and Flow-Pattern Modeling

and ease of analysis. They are added as solutions of sodium or potassium bromide, or lithium chloride, and have yielded reliable results in numerous wetland studies (Bowmer, 1987; Netter, 1994; King et al., 1997; Rash and Liehr, 1999; Drizzo et al., 2000; Grismer et al., 2001; Keller and Bays, 2001; Tanner et al., 2002a; Lin et al., 2003; García et al., 2004b; Smith et al., 2005). Lithium and bromide are not susceptible to degradation but are capable of being taken up by wetland plants and other organisms to a limited extent (Kung, 1990; Whitmer et al., 2000; Xu et al., 2004; Parsons et al., 2004). Perhaps more serious is the loss of any tracer, inert or not, caused by the movement of water from the water column to the rhizosphere due to the transpiration flux. Tracer is drawn into the root zone, where it is effectively lost during the relatively brief duration of a tracer experiment.

Background concentrations of lithium are typically very low; for instance 30±14 µg/L (mean ± s.d.; range 4–50 for 20 FWS systems). Bromide may be present in natural waters at concentrations well above detection; for instance 420±760 µg/L (mean ± s.d.; range 5–3,500 for 20 FWS systems). Bromide is typically analyzed via ion chromatography, although specific ion electrodes are available. Lithium can be measured using atomic absorption spectrometry (AAS) or inductively coupled plasma–optical emission spectrometry (ICP-OES).

Chazarenc et al. (2003) used high concentrations (67,000 mg/L) of sodium chloride solution as a tracer in a HSSF and measured conductivity in order to derive DTDs. They reported tracer recovery rates exceeding 78% from eight individual tracer studies. Sodium chloride can represent a relatively inexpensive option that can be easily monitored and logged in the field using electrical conductivity probes. However, high salt concentrations may have a negative effect on wetland biota and possibly treatment. Wörman and Kronnäs (2005) used potassium iodide as the tracer at the Alhagen, Sweden, wetland.

Amount of Tracer

The mass of tracer in the impulse addition is based on the expected dilution, the method detection limit of the analytical techniques, and the background concentration of the tracer in the wetland system after dilution. During the introduction of the tracer impulse into the influent stream, the concentration should be considerably higher than both the analytical method detection limit and background concentration of tracer in the wetland. A target for the peak effluent concentration in the response might therefore be at least 20–50 times the background concentration, and at least 50 times the detection limit.

It is perhaps easier to plan in terms of the average concentration desired in the response curve. The peak-to-mean ratio (ratio of the peak tracer concentration to the mean tracer concentration over a period of three detention times) is typically 2–3 for FWS wetlands, and 4–5 for HSSF wetlands. The benchmark concentration can be defined as the mass of tracer added divided by the nominal volume of water in the wetland:

\[C_{\text{bench}} = \frac{M}{V_n} \]

(B.55)

where

- \(C_{\text{bench}} \) = benchmark concentration, g/m³ = mg/L
- \(M \) = mass of tracer added, g
- \(V_n \) = nominal wetland water volume, m³

The reader is reminded that the nominal wetland water volume for subsurface flow wetlands must take into account the porosity of the granular medium in the wetland bed. This benchmark concentration will be approximately 30–70% of the peak concentration. Keller and Bays (2001) suggest that the quantity of tracer added, if assumed to mix uniformly throughout the volume of the wetland, should achieve a benchmark concentration at least 10 to 20 times the background concentration.

Density Stratification Problems with Salt Tracers

Tracer materials are most often available as either solids (e.g., NaBr, LiCl) or as concentrated solutions. These as-received materials are usually dissolved or diluted to form the tracer solution to be added, which is here designated to have concentration \(C_{\text{dose}} \). Care should be exercised in preparing a solution to be dosed into the wetland because there can be large heat-of-solution effects upon dissolution. Most tests are conducted as impulse tests, which implies that the tracer should be dumped into the wetland inlet structure all at once. However, at high \(C_{\text{dose}} \) concentrations, the density of the dosing solution may be substantially higher than that of the ambient water in the wetland to which it is added, causing the tracer pulse to sink to the bottom of the wetland.

In FWS wetlands, this situation is exacerbated by the presence of an inlet deep zone that serves as a repository for the dense slug of tracer. This effect is worsened by the transpiration flux in a FWS wetland, which draws water selectively from the wetland bottom and consequently may “pull” the dense tracer from the bottom of the water column into the soil matrix. Under such circumstances, tracer recovery will be poor. Although the typical interpretation of FWS wetland water flow is vertically averaged, water moves more slowly across the wetland bottom due to drag forces. This can cause the flow of the tracer through the wetland to be retarded as it slowly creeps along the bottom and stagnates in depressions. Consequently, density stratification can lead to a significant distortion in the DTD (Schmid et al., 2004a; 2004b).

To avoid the density stratification issue, the tracer concentration should not be so high as to result in a significant difference in density between the ambient wetland water and the tracer impulse when it is introduced into the wetland. For typical tracers salts, at 25°C, density equations are as follows (Söhnol and Novotny, 1985); all \(R^2 \gtrsim 0.9995 \):

- Lithium chloride: \(\rho = 1.0000 + (5.0327 \times 10^{-7})C_{\text{dose}} \)

(B.56)
Sodium bromide $\rho = 1.0000 + (7.2869 \times 10^{-7})C_{\text{dose}}$
(B.57)

Potassium bromide $\rho = 1.0132 + (6.9267 \times 10^{-7})C_{\text{dose}}$
(B.58)

Sodium chloride $\rho = 0.9986 + (2.6123 \times 10^{-7})C_{\text{dose}}$
(B.59)

where
C_{dose} = concentration of tracer dose solution, g/m3 = mg/L
ρ = density of tracer dose solution, g/cm3

It is known that, in lakes, a density difference of about 1% is enough to maintain stratification. In their teaching lab experiment to demonstrate this effect, Wetzel and Likens (1991) used a density difference of 1.5%. It is therefore not surprising that Chazarenc et al. (2003) observed tracer stratification in full-scale HSSF systems at a density difference of 3.4%.

There is also a body of anecdotal evidence that implicates density effects in anomalous tracer tests. For example, several LiCl tests were run by the South Florida Water Management District on test cell wetlands with instantaneous dosing with 78,000 mg/L lithium chloride. The density difference would have been on the order of 3.9%. Recoveries were quite variable, with some as low as 23%. Rousseau et al. (2000) reported “losing” a dose of high-concentration lithium in an SSF wetland pilot but finding it residing on the wetland bottom. The studies of Whitmer et al. (2000) displayed very low recoveries of sodium bromide, impulse-dosed into deep zones at about 200,000 mg/L. The estimated density difference would have been approximately 14.6%. Although the loss was attributed to plant uptake, it seems highly probable that the dense bromide accumulated in the inlet deep zones and stayed there. Schmid et al. (2003) observed tracer stratification in primary detention times. A minimal sampling frequency of 24 points is illustrated in Figure B.23. These are more densely spaced in the early portion of the response to capture the rise in concentration. A lesser frequency is needed far out on the tail. Where the flow rate is somewhat variable (stormwater wetlands, for instance), flow-weighted sampling will generally be the best way to ensure that accurate sampling of the tracer response curve is achieved. In any case, it is necessary to record both the time of sampling and volume of water that has passed through the sample point, as these are required in interpreting the variable-flow tracer-response data. The use of automatic samplers is of great benefit. They can be configured to collect samples at regular time intervals, or alternatively to collect samples on a flow-weighted basis.

Based on these findings, it is suggested that the density of the tracer impulse should be a great deal less than 1% of the density of the ambient wetland water in order to minimize the risk of density effects. Clearly, it is also useful to promote as much turbulence as possible at the point of water introduction so that the tracer is further diluted by the primary inlet water flow.

Fortunately, the density difference problem can also be alleviated by prolonging the period of tracer dose introduction. This effectively dilutes the dose concentration with incoming water prior to the wetland. In effect, the impulse is replaced by a “square wave” tracer input. The clock for the test is set to zero at the midpoint of the inlet tracer delivery time series. There will then be no error in the computation of the tracer detention time. The variance of the tracer outlet response is adjusted by subtracting the variance of the inlet pulse (Levenspiel, 1972). In this way, the dose concentration may be diluted by a very large factor.

Sampling Frequency and Duration

A quantitative tracer test requires definition of the full response curve, from the pretest background through the rising and falling limbs of the distribution and back down to a posttest plateau. This requires sampling for a long-enough period and at a suitable frequency to adequately describe the tracer response curve. Thus, an estimate of the likely DTD of the wetland should be made based on nominal parameters to design a sampling regime. Important aspects of the DTD to be considered when determining sampling frequency are the steeply rising limb of the peak concentration profile and the long, declining tail. However, tracer responses often cannot be accurately forecast. It is therefore prudent to collect and store more samples than anticipated to be needed because lithium and bromide do not degrade during storage. These supplementary samples can then be analyzed retroactively if they are deemed to be necessary based on analysis of the primary sample set.

About 30–40 sample points are normally adequate to define the response curve spread over about three nominal detention times. A minimal sampling frequency of 24 points is illustrated in Figure B.23. These are more densely spaced in the early portion of the response to capture the rise in concentration. A lesser frequency is needed far out on the tail. Where the flow rate is somewhat variable (stormwater wetlands, for instance), flow-weighted sampling will generally be the best way to ensure that accurate sampling of the tracer response curve is achieved. In any case, it is necessary to record both the time of sampling and volume of water that has passed through the sample point, as these are required in interpreting the variable-flow tracer-response data. The use of automatic samplers is of great benefit. They can be configured to collect samples at regular time intervals, or alternatively to collect samples on a flow-weighted basis.

© 2009 by Taylor & Francis Group, LLC
Sampling should begin immediately prior to tracer injection to identify the background concentration at the time of the tracer study. The greatest sampling frequency is required at times when the concentration is changing most rapidly (that is, around the time of the peak in concentration). The rise typically begins at 10–30% of T_n. The peak will typically occur at 50–90% of T_n.

Following the expected peak in tracer concentration, the sampling frequency can be progressively decreased. To adequately capture the declining tail of the DTD sampling is typically required for an extended period. Examination of tracer responses from the numerous available experiments indicates that the impulse response is typically complete after four T_n. In general, care should be taken not to allow too much volume to exit without being sampled. Otherwise, a spike or dip in the concentration could be partially or even completely missed, particularly at high flow rates (Werner and Kadlec, 2000c).

Hydrologic Measurements

To quantify the results of a tracer test, the complete hydrologic conditions must be known. The flow rates entering and exiting the wetland should be continuously logged over the duration of the tracer study. Rainfall can be important, and should be measured at the site. Evapotranspiration and seepage may be estimated. These combine to give the wetland water budget. In the context of a tracer test, the flows are necessary to compute the tracer mass balance and the recovery of tracer in the outflow. Effects of rain and ET are usually small, but not always (Chazarenc et al., 2004).

It is important to know the wetland water volume because it is required to compute the nominal detention time (τ_n). In turn, τ_n is used to calculate the volumetric efficiency of the wetland $\epsilon_v = \tau/\tau_n$. For FWS wetlands, the bathymetry is used to obtain the water volume. As noted in Chapter 2, these measurements are somewhat ambiguous because, typically, the wetland bottom is not well defined. For FWS wetlands, the water volume requires knowledge of the upper water surface and the porosity of the media. That porosity may be accurately known for the bare media, but the extent of pore blockage by roots, biofilms, and accreted solids is typically not accurately known.

Internal Sampling

In addition to inflow/outflow points, the tracer response at interior wetland points can be of some use in assessing the spatial characteristics of the wetland. There are two distinct cases to be considered: the individual cells in a multicompartment wetland, and points interior to an individual cell. The difference is considerable because, in the former case, the water volumetric flow rate past the measurement is known, whereas in the latter case it is not. Thus, it is possible to get a flow-weighted concentration at a cell outlet, whereas it is not possible at an interior point.

For cell networks with single inlets and outlets, there is no ambiguity, and efficient cells may be distinguished from inefficient cells. If there are multiple inlets and outlets, then averaging assumptions must be made, but analysis is still unambiguous. Perhaps the most involved cellwise tracer testing was performed at the Orlando Easterly treatment wetland, where the first 15 of 17 cells were tracer tested (Martinez and Wise, 2001) (see Figure B.24). These cells varied widely in their hydraulic behavior (see Table B.1). Results of the testing confirmed the need to re-establish the bathymetry of several cells (Sees, 2005).

Another multicell wetland tracer study was conducted at Lakeland, Florida (CH2M Hill, 1999; Keller and Bays, 2001). Four cells in series, of 81, 77, 166, and 30 ha, were tested separately, with recoveries of 67–106% and volumetric efficiencies of 0.04–0.45. Cell 2 had $\tau = 0.7$ d, and a $\tau_n = 19.1$ d, indicating very serious shortcircuiting. In such cell studies, it is feasible to measure the individual structure flows, and test protocols are the same as for single-cell wetlands. However, if a single pulse is to be followed through multiple cells in series, analysis must recognize that detention times (first moments) and variances (second moments) are additive (Levenspiel, 1972).

Both FWS and HSSF wetlands may also be sampled for tracer response at internal points, along and across the flow.
direction, and at varying depths. In contrast to cell studies, the flow fraction passing such internal points is unknown.

Internal tracer studies on FWS have been reported by Kadlec (2001a), Jawitz and White (2002), Crohn et al. (2005), Dierberg et al. (2005), and Harvey et al. (2005). These studies confirm some intuitively obvious phenomena. The Des Plaines River wetlands studies showed that the shallow and backwater areas of irregular FWS systems saw relatively less tracer than the main flow path (Kadlec, 2001a). Jawitz and White (2002) found that vegetated barrier strips perpendicular to flow produced only small variations in tracer arrival times across the flow direction, regardless of high (aspect ratio = 45) or low (aspect ratio = 5) length-to-width ratio. Crohn et al. (2005) also saw only small variation in arrival times in a sequence of cross-deep zones at the Hemet, California, wetland. However, remnant ditches and roads in cell 4 of the ENRP caused short-circuiting that was visible via rhodamine (see Figure B.8) but also quantified by quantitative analysis of the dye (Dierberg et al., 2005). Harvey et al. (2005) measured water velocities and conducted tracer studies to obtain the volume average water velocity. They found that the average velocity was only about two thirds of the spatial average due to the preferential velocity measurements being in open water zones.

Internal tracer sampling for HSSF systems was done in the researches of Spangler et al. (1976b), Fisher (1990), Pilgrim et al. (1992), Marsteiner et al. (1997), Melton (2005), and Nivala (2005). These studies provide a general picture of tracer preferentially moving through the bottom layers of gravel, regardless of whether it arrived there due to density or distribution (Figure B.25). When the bed floods, tracer testing indicates that almost all the flow is overland across the top of the gravel (Spangler et al., 1976b).

Flow in HSSF beds is typically nonuniform from side to side, as seen in Figure B.2. Time-series sampling at multiple points across the flow path often shows this imbalance in the form of quite dissimilar tracer responses (for instance, see Chapter 6, Figure 6.17). Studies by Pilgrim et al. (1992), Marsteiner (1997), Melton (2005), and Nivala (2005) show differing degrees of internal tracer response imbalance. However, internal patterns of tracer response are of no quantitative value in analyzing wetland behavior because of the lack of flow information to accompany them.

The old literature on tracer analysis describes internal average sampling (cross-transsects) as “through the wall” sampling (Levenspiel, 1972). In the wetland context, this corresponds to arithmetic averaging of samples taken at a number of points perpendicular to the flow direction (Kadlec, 2000). Averages of tracer concentrations taken across the flow direction are not the same as the flow-weighted concentration at that point in the overall travel path; in fact, they are often very much different (Levenspiel and Turner, 1970). As described in Chapter 2, different sampling points across the flow path led to very different internal tracer response curves at the Benton, Kentucky, HSSF wetland. The same result was found at a Texas on-site facility (Melton, 2005). Thus, spatially averaged internal cross-sampling is likely to be valid only if done in a deep zone that ensures complete mixing of the various flow elements (Crohn et al., 2005).

ANALYZING TRACER DATA

The goal of tracer studies is to understand the volumetric and DTD efficiencies of a particular wetland. Although the methods of processing data are straightforward, there are some nuances of data utilization that require explanation.
Baselines and Tails

In all cases, there will be a background concentration of the tracer in the wetland water. The value is not necessarily constant, but may vary during the test either due to random processes or to a (slight) time trend. Thus, the background concentration after the test may not be the same as before the test, either due to random effects or extremely slow bleedback of some small fraction of the test material. In other words, the tail of the response may not come back down to the starting background concentration. An example is shown in Figure B.4 for Cell 2 of the ENRP in Florida. Over 2 tons of lithium chloride were added to this 167-ha FWS wetland, with care taken to prevent density effects. The initial lithium in the wetland outflow was about 8–9 µg/L. After the test, some 35 to 45 days later, the outflow lithium appeared to no longer have a trend, and was 12–13 µg/L. It is not known if the higher background is due to added tracer remaining after very long times, or due to other causes.

It is intuitive that the initial background should be subtracted from the measured concentrations to keep track of the added lithium. For the ENRP tracer study, the corrected recovery of tracer for this test was 98%. However, the fact that the response did not return to the original baseline has a fairly large effect on the computed tracer detention time. The small concentrations of tracer that occur at long times are disproportionately important in the numerical evaluation of this summation, as seen in Table B.2. In the ENRP example, the tracer detention time is 13 days, calculated over the entire 47 d of the test, and about 12% of that is due to the material leaving in the plateau at 35–47 days. This “tail error” has long been known to possibly seriously affect tracer test results (Curl and McMillan, 1966).

There are two procedures that have been used to de-emphasize the long-term plateau effect. First, the tail of the response ought to be exponential, according to the generally accepted modeling results (Vereecken et al., 1999). Therefore, the tail of the response maybe fitted with an exponential function, relying upon the higher concentrations prior to the tail to set the rate of decline. This procedure has been followed by some wetland researchers (Dal Cin and Persson, 2000; Wang, 2006). Often, the “tail” of the measured exit concentration distribution is poorly defined. Sometimes the sampling is terminated too soon; sometimes the final baseline does not return to the starting zero. Under these circumstances, the tail may be determined as an exponentially decreasing function, extrapolated from the data points past the second inflection of the response.

The alternative procedure is to perform a least-squares fit of the selected DTD to the data, which places equal emphasis on the errors across the entire test. The result of this procedure for the ENRP Cell 2 example is shown in Figure B.4.

Tracer Mass Recovery

Closure of the tracer mass balance is a prerequisite to a good tracer test. Large losses or apparent gains of tracer, compared to the amount dosed, are a signal that something is awry with the water flows, or that the chosen tracer is undergoing extensive nonconservative behavior (Kadlec, 1994). The measure of the tracer test reliability is the recovery percentage. Outflow rates and tracer concentrations are combined and summed to compute the total mass in the exit tracer pulse:

\[M_o = \int_0^{\infty} Q\cdot C(t)\, dt = \? = M_i \]

\[(B.60) \]

where

- \(C(t) \) = exit tracer concentration, g/m³ = mg/L
- \(M_i \) = mass of tracer introduced with inflow, g
- \(M_o \) = mass of tracer exiting with outflow, g
- \(Q_o \) = average outflow rate, m³/d

\[\]
This permits a tracer mass balance and computation of the percentage tracer recovery. The concentrations used in this summation are first corrected for background. Secondly, if there are anomalies with the measured concentrations in the tail zone, or if the tail has been missed due to premature cessation of the test, then an exponential “patch” may be applied. Alternatively, a least-squares fit may be conducted. Typically, treatment wetland tracer recoveries in the range of 80–120% are considered acceptable.

POLLUTANT REMOVAL EFFECTS

A primary reason for tracer analysis is to be able to account for hydraulic effects and thus reduce that part of the variability in pollutant reductions. First and foremost, it is desirable to know the real retention time, or equivalently the volumetric efficiency. Secondly, the distribution of detention times is important via the DTD efficiency.

The models discussed in this appendix are all concerned with correctly describing the behavior of an inert material as it passes through the wetland. However, the important target is correctly describing reactive materials. To understand the implications for DTD model selection, a hypothetical case is considered. Suppose that the wetland behaves like four well-mixed units in series, and suppose that the contaminant in question follows first-order kinetics and has a zero background concentration. For this illustration, the amount (concentration) of pollutant remaining at the outflow will be considered as the measure of performance.

The first questions are: Does it matter if there are four TIS? Isn’t plug flow good enough? To answer those, a variety of rate coefficients and detention times may be considered for the two cases. It is the product $Da = kt/h$ that controls both cases. Figure B.26 shows that, for small Da, which corresponds to small removal of the contaminant, there is not much difference between models. If $Da < 1$, for which there is more than 40% of the material remaining, there is only a maximum of 10% difference. Either model could be effectively used if performance was to be in this low range.

However, if removals in excess of 90% are contemplated, then there are very big differences between the plug flow and 4 TIS forecasts. The ratio of fractions remaining grows from a factor of two at 90% 4 TIS conversion to a factor of twenty at 98% 4 TIS conversion. Therefore, if high removals are contemplated, it is very important to correctly characterize wetland internal hydraulics.

THE TAIL OF THE DTD

The next issue is: How careful do we have to be in describing the details of the tracer response? Does it matter if the tail end of the DTD is accurately modeled? To answer these questions, we consider the origins of the unreacted material in the wetland outflow. If there are shortcircuits, they will carry the contaminant to the wetland outlet before they have had much time to react. If there are dead zones, water will remain there a long time and be fully reacted. These ideas may be quantified by considering the detention times for the unreacted materials. We therefore continue the illustration and calculate the fraction of the unreacted effluent material corresponding to different detention times. This is the same calculation as for degrading tracer that was considered earlier. Figure B.27 shows the travel time distribution of the unreacted material leaving for $Da = 2$. The material leaving primarily followed short detention paths: 98% of the leftovers came from detentions less than 1.5 times the average detention time, and 85% from detentions less than 1.0 times the average detention time. The tail is irrelevant to the determination of the amount of unreacted material.

The example chosen is representative of only one wetland hydraulics and one operating condition. However, exploration of the TIS model shows that the conclusion of tail irrelevancy is strengthened for lower numbers of TIS (TIS < 4), and

![Figure B.26](image-url)
Variation of plug flow and 4 TIS model results for various rate constants.
also for non-TIS DTDs with longer and bigger tails. Higher Damköhler numbers, equivalent to higher removal percentages, shift the origin of unreacted material to even shorter detention times. For \(Da = 1 \), or 60% unreacted material, 99% of the leftovers come from detentions less than 2.0 times the average detention time, and 75% from detentions less than 1.0 times the average detention time.

The Head of the DTD

The front end of the tracer response represents what is generically called *shortcircuiting*. In pathological situations, a large peak occurs far in advance of the nominal detention time. However, even in “normal” situations, it is often necessary to correctly account for the water and associated pollutants that leave the wetland early.

Given the insensitivity of pollutant removal to the tail of the DTD, it is logical to ask whether the head of the DTD is critical to pollutant removal. There is usually a delay of some magnitude before any tracer arrives at the wetland outlet, which is larger for HSSF wetlands than for FWS wetlands (see Figures B.5 and B.6). For 35 FWS wetland tracer tests, the first tracer breakthrough occurred at 23 ± 11% of the tracer detention time. For 32 HSSF wetland tracer tests, the first tracer breakthrough occurred at 37 ± 14% of the tracer detention time.

For some guidance, we return to the 4-TIS illustration. It is found that, for low rates of reaction, the early-departing material carries only a small fraction of the unreacted total. For FWS behavior, and for \(Da = 1 \), or 60% unreacted material, only 2% of the leftovers come from detentions less than 0.25 times the average detention time. For HSSF behavior, and for \(Da = 5 \), or 4% unreacted material, 48% of the leftovers come from detentions less than 0.4 times the average detention time. It is clear that care must be taken to provide a proper representation of the leading portion of the DTD if it is necessary to characterize high removals.

The two simplest choices for describing the breakthrough lag are the TIS model, and the TIS model modified to have a leading plug flow component (see Equation B.27).

In general, this three-parameter \((N, \tau, t_d)\) fit of the DTD will give a better fit to data than the two-parameter TIS fit, especially if there is a substantial delay. However, it adds some complexity to pollutant removal modeling, and so it must be examined for necessity. As an illustration, the basis for comparison is taken to be a wetland that behaves like 4 TIS after a time delay. The “head effect” is known to be most important for high removal percentages, so the Damköhler number is selected to be \(Da = 3 \), corresponding to 95% removal in plug flow, or 5.0% remaining. For 4 TIS, the percent remaining is 10.65%. The TIS model appears to give a reasonable least-squares fit to the delayed tracer response (Figure B.28), but it does turn up a bit sooner than the delay. Because of the delay, the number of TIS grows with the delay, from \(N = 4 \) for no delay to \(N = 17.9 \) for a delay of 50% of the detention time.

The amounts of pollutant remaining also differ for the delayed “data” and the least-squares NTIS fit. The NTIS fit produces greater amounts remaining: 7% more for a delay of 23% of the detention time (FWS), and 10% more for a delay of 37% of the detention time (HSSF). Therefore, if the wetland is contemplated to remove less than 95% of a contaminant, it is probably acceptable to use the two-parameter NTIS fit rather than the three-parameter delayed NTIS fit of the tracer response.

It is also possible to use the moment method for fitting the NTIS model. Earlier it was seen that this method emphasized the tail of the DTD, but it also emphasizes the head of the DTD. Of course, that is exactly what is needed to better account for the delay.
STRATEGIES FOR DATA FITTING

The preceding model exploration exercises lead to suggestions regarding the strategy of fitting and using tracer data. These are

- The “tail” of the tracer DTD is not generally an important contributor to the amount of a pollutant that will pass through the wetland unreacted. It is probably not necessary to add parameters to tracer models to better account for long “tails.”
- The “head” of the tracer DTD is important for situations where high contaminant removals are contemplated. The important feature is the existence of a delay before any tracer is observed in the wetland outflow. The presence of such a delay contributes to a better pattern of flow by virtue of adding a plug flow component to the response. Typically, for high removals, the contaminant residual is reduced 25% in FWS wetlands, and 35% in HSSF wetlands, compared to systems with no delay.

The delay may be accounted by adding a third parameter to the NTIS model. Alternatively, it is probably acceptable to use the NTIS model.

In the data processing in this book, we have used the simpler two-parameter approach.

REACTIONS ALONG FLOW PATHS FOR FWS WETLANDS

In addition to distributions of detention times (across flow fractions), other factors exist that can influence overall Damköhler numbers. One class of possibilities arises from spatial distributions of wetland water depths and vegetation density. Distributions of Damköhler numbers across flow fractions may be created due to both k and i being related to vegetation density and depth.

Kadlec (2000) postulated that patterns of vegetation can strongly influence the perceived reaction rates in treatment wetlands, as well as affect the velocity and amount of water that passes through a given region of a FWS wetland. This presumption was explored in more detail by Carleton (2002).

As an example, consider a wetland with parallel flow paths of unequal vegetation density. High-velocity flow paths result from lack of vegetative resistance; low-velocity paths from large vegetative resistance (Hosokawa and Horie, 1992; Jenkins and Greenway, 2005). In addition, wetland data show that water velocity is strongly depth dependent (Kadlec and Knight, 1996). For laminar flow under a fixed water surface gradient,

$$u = \frac{a'h^bS}{X} = \frac{ah^b}{X}$$

$$t = \frac{L}{u} = \frac{LX}{ah^b}$$

where

- $a, b, c =$ constants, d^{-1}
- $h =$ water depth, m
- $L =$ length of wetland cell, m
- $X =$ submerged vegetation surface area density, m^2/m^3
- $S =$ slope of the water surface, m/m
- $t =$ time, d
- $u =$ superficial water velocity, m/d

Different values of the exponent b apply to different vegetation types. Here, for purposes of illustration, $b = 1$ is chosen. These relations state that, for a specified overall water slope, the water velocity is inversely proportional to the immersed vegetation surface area and directly proportional to the depth. Therefore, the detention time along any flow path is directly proportional to the vegetation density and inversely proportional to the depth. Consequently, cross-flow spatial distributions of h and X create a distribution of detention times, as detailed by Carleton (2002).

Depth and vegetation density effects on water velocity have been investigated, and an improved understanding is emerging (e.g., Hall and Freeman, 1994). Those same variables exert influence on pollutant-reduction rates, but the quantification of those
effects is still in early stages. There have been some definitive studies that establish the influence of water depth on volumetric rate coefficients; for instance, the data of Gearheart et al. (1989) that clearly demonstrated k for BOD was inversely proportional to depth. In other cases, the relationship is less clear. Stem density has been found to be an important determinant of rate coefficients in some cases (Lakhsman, 1982) but not in others.

The wetland vegetation density influences many wetland pollutant removal processes. This may be due to the biofilms that coat submerged litter, roots, and stems, or to the biogeochemical cycling that creates net uptake to new sediments (Khatiwada and Polprasert, 1999a). Many removal processes are associated with surface area, such as mass transfer or microbial reactions. The active reaction zone may therefore be on the bottom, in the water column, or a combination. If the active zone is exclusively associated with immersed surfaces, the rate coefficient is presumptively proportional to X, as observed by Smith et al. (2000) for nitrate reduction. Conversely, many wetlands display constancy of areal rate, and thus the volumetric rate coefficients used in previous sections are inversely proportional to depth:

$$k = \frac{\beta X}{h} \quad \text{(B.63)}$$

There may be other influences on the rate coefficient, such as enhancement of mass transfer via increasing velocity. Here, such velocity dependence is assumed to be absent, as a limiting case.

The effect of parallel spatial patterns of vegetation density and water depth is to create spatial patterns of the removal rate constant. The effects of both types of distribution on pollutant removal are thus two-fold. Flows through low vegetation density regions are fast and ineffective, whereas flows through high vegetation density regions are slow and effective. Flows through high-depth regions are fast and ineffective, while flows through low-depth regions are slow and effective. Combination of Equations B.62 and B.63 for $b = 1$ gives

$$kt = \left(\frac{a \beta}{L} \right) t^2 = \gamma t^2 \quad \text{(B.64)}$$

where

$$\gamma = (a \beta / L) = \text{constant, } \text{d}^{-2}$$

This is the same result presented by Carleton (2002). The fraction remaining (for $C_i = 0$) along a parallel flow path of vegetation resistance X and detention time t is

$$\frac{C}{C_i} = e^{(-\gamma t^2)} \quad \text{(B.65)}$$

Under this potential scenario, the fraction of pollutant remaining along a given flow path decreases exponentially with the square of the detention time along that path. It is the result of a direct interrelation of k, X, h, and, t and the corresponding wetland circumstance is termed the “$Xhkt$” condition. Note that there is a serious consequence of the $Xhkt$ condition, in that travel time in a flow system is no longer equivalent to batch time in a non-flow-through system. Any batch experiment is necessarily done under conditions of constant X and variable time, which is not possible in a flow system if travel time is dependent on X. This nonequivalence has been experimentally explored by Stein et al. (2003).

Vegetation density and depth distributions can produce a false impression of plug flow conditions. Poor treatment along fast flow paths produces a faster-than-average rate of pollutant removal at longer detention times, which precludes plateaus in concentration profiles. Kadlec (2000) points out that the interdependence of k and detention time leads to an imputed PFR rate constant (from a PFR fit of the $Xhkt$ data) that depends upon the hydraulic loading rate. Here, it is additionally noted that the $Xhkt$ condition may yield the appearance of PFR performance for an NTIS wetland. To illustrate, the behavior of a 3-TIS wetland is examined under the $Xhkt$ assumption for a zero-background concentration. The coefficient $\gamma = 0.25 \text{ d}^{-2}$ yields flow-weighted outflow concentrations that decrease with increasing mean detention time (Figure B.29). This hypothetical data may be fitted with a relaxed TIS model, where the variable P represents the

FIGURE B.29 Fraction remaining for a single compound undergoing first-order degradation or removal in a wetland with variable vegetation density on parallel flow paths. The points are computed from Equation B.38, coupled to a 3-TIS DTD. The line represents the NTIS model, as well as the PFR model.
combined effect of the number of tanks, N, and weathering of the contaminant, as discussed in Chapter 6. The results for this model are $P = 1,834$, $k_{app} = 0.358 \text{ d}^{-1}$, and $R^2 = 0.982$. This high P-value corresponds to an apparent plug flow condition.

Thus, both increases and decreases in the apparent TIS number can result from internally distributed parameters. Interestingly, no combination of distribution effects has been found here that caused performance behavior to stray far from an envelope bracketed by apparent plug flow and apparent TIS.

SUMMARY

Tracer testing offers a means of better understanding of the processes controlling the performance of treatment wetlands. Results are now available from hundreds of tracer tests of FWS and HSSF systems. Despite the appealing simplicity of the plug flow assumption that has repeatedly been made, and continues to be made, in the literature, it is abundantly clear that neither FWS nor HSSF systems behave as plug flow. Furthermore, many wetlands have significant fractions of the water column that are dead zones, which are not directly flushed by flowing water, as evidenced by volumetric efficiencies less than unity. The interpretation of wetland pollutant removal data, and the design for pollutant removal, are facilitated by a knowledge of the volumetric efficiency, as well as the DTD efficiency of the wetland.

The proper technique of conducting a tracer test has not always been adhered to, thus causing difficulties in interpretation. Density stratification, degradable and sorbable tracers, and lack of hydrologic control have obscured results in some cases. Nonetheless, a great deal of progress has been made in the last ten years toward better understanding of the features of treatment wetlands and how they affect hydraulic behavior. It has been possible to apply quite sophisticated models to represent tracer responses, but that level of detail is not always necessary for interpretation of contaminant removals. Importantly, this new understanding moves the science of wetland performance toward greater confidence levels. Although the old plug flow approach may have been sufficient for interpolating key process data in for design purposes, extrapolation beyond the existing data set was quite often disastrous. Tracer results enable a new generation of models that are better able to describe systems over wider ranges of operation conditions.